ANNALES		
UNIVERSITATIS MARIAE CURIE-SKもODOWSKA		
LUBLIN - POLONIA		
vol. Lix, 2005	SECTIO A	

OLLI TAMMI

On estimating the coefficient product $\boldsymbol{A}_{1} \boldsymbol{A}_{\mathbf{2}} \boldsymbol{A}_{\mathbf{3}}$ for real bounded non-vanishing univalent functions

Abstract

The class of the title is sufficiently limited for allowing certain estimations for combinations of the three first coefficients A_{1}, A_{2} and A_{3}. The negative sign of A_{2} implies complications which, however, in the present treatment will be governed, when estimating the product $A_{1} A_{2} A_{3}$.

1. Introduction. In [2] the observations of J. Śladkowska [1] were utilized in determining the first coefficient bodies for functions F which are univalent and bounded with the condition of non-vanishedness. Denote the class of these functions by $S^{\prime}(B)$. Another condition will be a restriction to real coefficients A_{ν}. The subclass thus introduced is denoted by $S_{R}^{\prime}(B)$:

$$
\begin{cases}S^{\prime}(B)=\left\{F \mid F(z)=B+A_{1} z+\ldots,\right. & z \in U \supset F(U) \not \supset O, \\ & \left.0<B<1, A_{1}>0\right\}, \\ S_{R}^{\prime}(B) \subset S^{\prime}(B) . & \end{cases}
$$

Here U is the unit disc centered at the origin and B is the leading coefficient, characterizing the function through the image of the origin: $B=F(O)$. The class notation repeats those of the normalized bounded

[^0]univalent functions f :
\[

\left\{$$
\begin{array}{l}
S(b)=\left\{f\left|f(z)=b\left(z+a_{2} z^{2}+\cdots\right), z \in U,|f(z)|<1,0<b<1\right\},\right. \\
S_{R}(b) \subset S(b) .
\end{array}
$$\right.
\]

Again, $S_{R}(b)$ means the real subclass of $S(b)$.
The observation on Śladkowska combined the above real classes together through the function L :

$$
\left\{\begin{array}{l}
L=L(z)=K^{-1}\left[\frac{4 B}{(1-B)^{2}}\left(K(z)+\frac{1}{4}\right)\right], \\
K=K(z)=\frac{z}{(1-z)^{2}}
\end{array}\right.
$$

Here K is the left Koebe-function and hence $L(U)$ is a unit disc with a left radial slit from the point -1 to the origin. The one-to-one correspondence

$$
L \circ f \in S_{R}^{\prime}(B), \quad L^{-1} \circ F \in S_{R}(b)
$$

will be governed by aid of the development of L :

$$
\left\{\begin{array}{l}
y=L(z)=B+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots, \\
B_{1}=\frac{4 B(1-B)}{1+B} \\
B_{2}=\frac{8 B(1-B)}{(1+B)^{3}}\left(1-2 B-B^{2}\right), \\
B_{3}=\frac{4 B(1-B)}{(1+B)^{5}}\left(3-20 B+18 B^{2}+12 B^{3}+3 B^{4}\right),
\end{array}\right.
$$

yielding

$$
\left\{\begin{array}{l}
b=\frac{A_{1}}{B_{1}} \\
a_{2}=\frac{A_{2}}{A_{1}}-\frac{B_{2}}{B_{1}^{2}} A_{1}, \\
a_{3}=\frac{A_{3}}{A_{1}}-2 \frac{B_{2}}{B_{1}^{2}} A_{2}+\left(2 \frac{B_{2}^{2}}{B_{1}^{4}}-\frac{B_{3}}{B_{1}^{3}}\right) A_{1}^{2}
\end{array}\right.
$$

The knowledge concerning the coefficient bodies of $S_{R}(b)$ allows determining the corresponding bodies of $S_{R}^{\prime}(B)[2]$. They are denoted by $\left(A_{2}, A_{1}\right)$ and $\left(A_{3}, A_{2}, A_{1}\right)$. For $\left(A_{2}, A_{1}\right)$ we have

$$
\begin{array}{r}
\left(A_{2}, A_{1}\right)=\left\{\left(A_{1}, A_{2}\right) \left\lvert\,-2 A_{1}+\frac{A_{1}^{2}}{B\left(1-B^{2}\right)} \leq A_{2} \leq 2 A_{1}-\frac{2+B}{1-B^{2}} A_{1}^{2}\right.\right. \\
\left.0<A_{1}<B_{1}\right\}
\end{array}
$$

The body $\left(A_{3}, A_{2}, A_{1}\right)$ is defined on $\left(A_{2}, A_{1}\right)$ so that

$$
E \leq A_{3} \leq F
$$

where in the whole $\left(A_{2}, A_{1}\right)$,

$$
E=A_{3}=\frac{A_{2}^{2}}{A_{1}}-A_{1}+\frac{A_{1}^{3}}{\left(1-B^{2}\right)^{2}}
$$

The extremal domains connected to E are of left-right radial-slit types [2].
For F the area of definition is divided in three parts I, II and III visualized in Figure 1. The dividing lines $\mathrm{I} \cap \mathrm{II}$ and $\mathrm{II} \cap$ III are determined by the limits

$$
R^{2}\left[B_{2}-2 B_{1}|\ln R|\right] \leq A_{2} \leq R^{2}\left[B_{2}+2 B_{1}|\ln R|\right]
$$

where $R=A_{1} / B_{1}$.
The slit-type boundary functions extremizing F are similarly visualized in Figure 1.

$B=0.3$

Figure 1

Observe that according to the extremal types the region II is split in two parts, II_{1} and II_{2} by the dividing line

$$
A_{2}=R^{2}\left[B_{2}+2 B_{1} \frac{1-6 B+B^{2}}{(1+B)^{2}} \ln R\right]
$$

In the following denote

$$
D_{1}=B_{3} / B_{1}-2 B_{2}^{2} / B_{1}^{2} .
$$

By using this notation we have for F in the regions I and III (cf. [2]):

$$
\left\{\begin{array}{l}
A_{3}=\left[a_{3}+2 \frac{B_{2}}{B_{1}^{2}} A_{2}+D_{1} R^{2}\right] A_{1}=F, \tag{1}\\
A_{2}=A_{1} a_{2}+B_{2} R^{2}, \\
a_{2}=2 \delta(R-\sigma+\sigma \ln \sigma) ; \quad \sigma \in[R, 1], \\
a_{3}=1-R^{2}+a_{2}^{2}+2 \delta \cdot \sigma a_{2}+2(\sigma-R)^{2} .
\end{array}\right.
$$

Here $\delta=1$ for I and $\delta=-1$ for III.
In II, F is defined by (cf. [2])

$$
\left\{\begin{array}{l}
A_{3}=\left[a_{3}+2 \frac{B_{2}}{B_{1}^{2}} A_{2}+D_{1} R^{2}\right] A_{1}=F \tag{2}\\
a_{2}=\frac{A_{2}}{A_{1}}-\frac{B_{2}}{B_{1}} R \\
a_{3}=1-R^{2}+\left(1+\frac{1}{\ln R}\right) a_{2}^{2}
\end{array}\right.
$$

2. Maximizing $\boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{2}} \boldsymbol{A}_{\mathbf{3}}$. In some former papers, e.g. [3], a few simple functionals of the coefficients A_{ν} were considered. They were chosen to be independent of the sign of A_{2}. The present functional is free of that restriction. Thus

$$
\begin{aligned}
& A_{2} \geq 0: A_{1} A_{2} E \leq A_{1} A_{2} A_{3} \leq A_{1} A_{2} F, \\
& A_{2} \leq 0: A_{1} A_{2} F \leq A_{1} A_{2} A_{3} \leq A_{1} A_{2} E .
\end{aligned}
$$

Consider first the local extremal point connected with $A_{1} A_{2} E$:

$$
\begin{equation*}
A_{2} \leq 0: Q=A_{1} A_{2} A_{3} \leq A_{1} A_{2} E=A_{2}^{3}+\left(\frac{A_{1}^{4}}{\left(1-B^{2}\right)^{2}}-A_{1}^{2}\right) A_{2} \tag{3}
\end{equation*}
$$

Differentiating this we obtain for the local extremal:

$$
\begin{equation*}
Q=\frac{\sqrt{3}}{36}\left(1-B^{2}\right)^{3} ; A_{1}=\frac{1-B^{2}}{\sqrt{2}}, A_{2}=-\frac{1-B^{2}}{2 \sqrt{3}}, A_{3}=-\frac{\sqrt{2}}{6}\left(1-B^{2}\right) . \tag{4}
\end{equation*}
$$

The extremal point lies above the lower boundary arc $\partial \mathrm{I}$ of $\left(A_{2}, A_{1}\right)$ if

$$
\begin{gather*}
-\frac{1-B^{2}}{2 \sqrt{3}}-\left[-2 A_{1}+\frac{A_{1}^{2}}{B\left(1-B^{2}\right)}\right]_{A_{1}=\frac{1-B^{2}}{\sqrt{2}}} \geq 0 \\
\Downarrow \\
B \geq \widetilde{c}=\frac{6 \sqrt{2}+\sqrt{3}}{23}=0.444231834 . \tag{5}
\end{gather*}
$$

For the upper boundary arc ∂ III of $\left(A_{2}, A_{1}\right)$ we require

$$
\left[2 A_{1}-\frac{2+B}{1-B^{2}} A_{1}^{2}\right]_{A_{1}=\frac{1-B^{2}}{\sqrt{2}}} \geq-\frac{1-B^{2}}{2 \sqrt{3}}
$$

which holds for the whole interval $0<B<1$.
For an interval below \widetilde{c} the extremal point will be located on the lower boundary arc $\partial \mathrm{I}$,

$$
\partial \mathrm{I}: \quad A_{2}=-2 A_{1}+\frac{A_{1}^{2}}{B\left(1-B^{2}\right)}
$$

where according to (3),

$$
Q=-6 A_{1}^{3}+\frac{11 A_{1}^{4}}{B\left(1-B^{2}\right)}-\frac{6+2 B^{2}}{B^{2}\left(1-B^{2}\right)^{2}} A_{1}^{5}+\frac{1+B^{2}}{B^{3}\left(1-B^{2}\right)^{3}} A_{1}^{6}
$$

For the local extremal point on $\partial \mathrm{I}$ we thus have

$$
\begin{align*}
-9\left[B\left(1-B^{2}\right)\right]^{3} & +22\left[B\left(1-B^{2}\right)\right]^{2} A_{1} \\
& -5\left[B\left(1-B^{2}\right)\right]\left(3+B^{2}\right) A_{1}^{2}+3\left(1+B^{2}\right) A_{1}^{3}=0 \tag{6}
\end{align*}
$$

This condition is satisfied at the point (4) for $B=\widetilde{c}$.
Next, determine the local extremal point of $Q=A_{1} A_{2} F$ in the regions I and III. From (1) deduce

$$
\left\{\begin{align*}
\frac{1}{2 A_{1}^{3}} \cdot \frac{\partial Q}{\partial \sigma} & =h_{0}+h_{1} A_{1}+h_{2} A_{1}^{2}=0 \tag{7}\\
h_{0} & =\delta \ln \sigma\left(1+12 s^{2}+12 \sigma s+2 \sigma^{2}\right) \\
h_{1} & =4 \ln \sigma(3 s+\sigma) S \\
h_{2} & =\delta \ln \sigma\left(13 / B_{1}^{2}+12 \delta B_{2} / B_{1}^{3}+2 B_{2}^{2} / B_{1}^{4}+B_{3} / B_{1}^{3}\right)
\end{align*}\right.
$$

Further

$$
\left\{\begin{align*}
\frac{1}{A_{1}^{2}} \cdot \frac{\partial Q}{\partial A_{1}} & =k_{0}+k_{1} A_{1}+k_{2} A_{1}^{2}+k_{3} A_{1}^{3}=0 \tag{8}\\
k_{0} & =6 \delta s\left(1+4 s^{2}+4 \sigma s+2 \sigma^{2}\right) \\
k_{1} & =4\left(1+12 s^{2}+4 \sigma s+2 \sigma^{2}\right) S \\
k_{2} & =10 \delta s\left(2 S^{2}+5 / B_{1}^{2}+4 \delta B_{2} / B_{1}^{3}+B_{3} / B_{1}^{3}\right) \\
k_{3} & =6\left(5 / B_{1}^{2}+4 \delta B_{2} / B_{1}^{3}+B_{3} / B_{1}^{3}\right) S
\end{align*}\right.
$$

Here

$$
s=\sigma \ln \sigma-\sigma, S=2 \delta / B_{1}+B_{2} / B_{1}^{2}
$$

and $\delta=1$ for I and $\delta=-1$ for III.
From (7)

$$
A_{1}=\frac{-h_{1}+\delta \cdot \sqrt{h_{1}^{2}-4 h_{0} h_{2}}}{2 h_{2}}
$$

which, when substituted in (8), yields in the local extremal case σ and hence A_{1}, too.

There remains the maximizing of $Q=A_{1} A_{2} F$ in II. By aid of the abbreviations

$$
\begin{aligned}
& A_{1} / B_{1}=R, H=1+1 / \ln R \\
& D_{2}=B_{3} / B_{1}-B_{2}^{2} / B_{1}^{2}-1, D_{3}=B_{3} / B_{1}+2 B_{2}^{2} / B_{1}^{2}-1
\end{aligned}
$$

we obtain from (2)

$$
\left\{\begin{aligned}
\frac{-\ln ^{2} R}{A_{1} A_{2}} \cdot \frac{\partial Q}{\partial A_{1}} & =a_{2}^{2}+4 \frac{B_{2}}{B_{1}} R \ln R \cdot a_{2}-2 \ln ^{2} R\left(1+2 R^{2} D_{2}\right) \\
\frac{1}{A_{1}^{2}} \cdot \frac{\partial Q}{\partial A_{2}} & =3 H a_{2}^{2}+2 \frac{B_{2}}{B_{1}}(H+2) R a_{2}+1+D_{3} R^{2}
\end{aligned}\right.
$$

This yields the necessary extremal conditions for determining A_{1} and A_{2} :

$$
\left\{\begin{array}{l}
a_{2}=\frac{G_{4}-G_{2}}{G_{1}-G_{3}} \Rightarrow A_{2}=A_{1} a_{2}+B_{2} R^{2} \\
3 H a_{2}^{2}+G_{3} a_{2}+G_{4}=0 \\
G_{1}=12 H \frac{B_{2}}{B_{1}} R \ln R \\
G_{2}=-6 H \ln ^{2} R\left(1+2 R^{2} D_{2}\right) \\
G_{3}= \\
2 \frac{B_{2}}{B_{1}}(H+2) R \\
G_{4}=1+D_{3} R^{2}
\end{array}\right.
$$

3. Maximalization results. In Table 1 there is a list of maximal points and values for increasing values of B. Observe, that the sign - in the regionnotation implies maximizing with negative A_{2}, i.e. the maximum is obtained from $A_{1} A_{2} E$ which means explicit expression (4) for $\max Q$. Similarly, + indicates maximalization with positive A_{2}, from $A_{1} A_{2} F$, yielding results in implicit form.

There exist the following max max-cases:

$$
\begin{aligned}
& \max \max Q=0.037487883 ; B=b_{1}=0.105067336 \in \mathrm{P} \\
& \max \max Q=0.026754453 ; \quad B=b_{2}=0.397998215 \in \partial \mathrm{I}
\end{aligned}
$$

The maximizing point varies with increasing values of B. Crossing the boundaries between different regions of the body $\left(A_{3}, A_{2}, A_{1}\right)$ occurs at the
points c_{2} and c_{3} :

$$
\begin{aligned}
& B=c_{2}=0.185727645 \in \mathrm{II}_{+} \cap \mathrm{III}_{+}, \\
& B=c_{3}=0.453697122 \in \mathrm{I}_{-} \cap \mathrm{II}_{-} .
\end{aligned}
$$

At

$$
B=d=0.312534879 \in \mathrm{III}_{+}, \partial \mathrm{I}
$$

the maximalization occurs simultaneously on the upper surface III_{+}and on the lower boundary $\partial \mathrm{I}$, determining at the same time

$$
\min \max Q=0.021714369 ; B=d \in \mathrm{III}_{+} \partial \mathrm{I} .
$$

Such double maximal points may be called Twin Peaks on the surface of the coefficient body (A_{3}, A_{2}, A_{1}).

Table 1.

B	Region	A_{1}	A_{2}	A_{3}	$\max Q$
0.01	P	0.039208	0.075326	0.105567	0.000312
0.1	P	0.327273	0.427348	0.266517	0.037275
$0.105067=b_{1}$	P	0.340353	0.434133	0.253711	0.037488
0.1051	P	0.340436	0.434173	0.253625	0.037488
$0.105369=c_{1}$	$\mathrm{II}_{+} \cap \mathrm{P}$	0.341122	0.434504	0.252918	0.037487
0.14	II_{+}	0.356935	0.412379	0.244326	0.035963
$0.185728=c_{2}$	$\mathrm{II}_{+} \cap \mathrm{III}_{+}$	0.355339	0.388176	0.233366	0.032189
0.2	III_{+}	0.350186	0.383550	0.230412	0.030947
0.3	III_{+}	0.312908	0.348136	0.208226	0.022683
$0.312535=d$	III_{+}	0.308088	0.343354	0.205272	0.021714
$0.312535=d$	$\partial \mathrm{I}$	0.455939	-0.174732	-0.272563	0.021714
0.35	$\partial \mathrm{I}$	0.495114	-0.192058	-0.262990	0.025008
0.38	$\partial \mathrm{I}$	0.522565	-0.205232	-0.247032	0.026493
0.39	$\partial \mathrm{I}$	0.530866	-0.209495	-0.240097	0.026702
$0.397998=b_{2}$	$\partial \mathrm{I}$	0.537182	-0.212860	-0.233981	0.026754
0.4	$\partial \mathrm{I}$	0.538716	-0.213697	-0.232372	0.026751
$0.444232=\widetilde{c}$	$\partial \mathrm{I} \cap \mathrm{I}$	0.567565	-0.231707	-0.189188	0.024880
0.45	I_	0.563918	-0.230218	-0.187973	0.024403
$0.453697=c_{3}$	$\mathrm{I}_{-} \cap \mathrm{II}_{-}$	0.561555	-0.229254	-0.187185	0.024098
0.46	II-	0.557483	-0.227591	-0.185828	0.023578
0.5	II_	0.530330	-0.216506	-0.176777	0.020297
0.6	II_	0.452548	-0.184752	-0.150849	0.012612
0.7	II_	0.360624	-0.147224	-0.120208	0.006382
0.8	II_	0.254558	-0.103923	-0.084853	0.002245
0.9	II_	0.134350	-0.054848	-0.044783	0.000330
0.99	II-	0.014071	-0.005745	-0.004690	0.000000

The point \widetilde{c} from (5) defines an interval $d \leq B \leq \widetilde{c}$ in which the maximizing point lies on $\partial \mathrm{I}$. From this onwards, in the interval $\widetilde{c}<B<1$, the regions I_ or II_ take care of the maximalization.

If B is sufficiently close to 0 the point P assumes the role of the maximizing point. In order to find the shifting point $c_{1}=\mathrm{II}_{+} \cap \mathrm{P}$ let A_{1} tend to B_{1} so that

$$
A_{1}=B_{1}(1-h), \quad h \rightarrow+0
$$

From (9) we see that

$$
\begin{gathered}
a_{2}=-\frac{B_{1} \ln R}{2 B_{2}}\left(1+D_{3}\right)+O(h), O(h) \rightarrow 0 \text { for } h \rightarrow 0 \\
-\frac{1}{A_{1} A_{2}} \cdot \frac{\partial Q}{\partial A_{1}}=K(B)+O(h)
\end{gathered}
$$

where

$$
K(B)=\frac{B_{1}^{2}}{4 B_{2}^{2}}\left(1+D_{3}\right)^{2}-4 D_{2}-2 D_{3}-4
$$

Hence $\frac{\partial Q}{\partial A_{1}}=0$ yields for $B=c_{1}$ the condition $K(B)=0$, i.e.

$$
\begin{gather*}
8 B_{1}^{2} B_{2}^{2}-20 B_{1} B_{2}^{2} B_{3}+B_{1}^{2} B_{3}^{2}+4 B_{2}^{4}=0 \tag{10}\\
\Downarrow \\
B=c_{1}=0.105369060 \in \mathrm{II}_{+} \cap \mathrm{P}
\end{gather*}
$$

The explicit part of the above estimation is collected as follows.
Result. In $S_{R}^{\prime}(B)$ the maximum of $A_{1} A_{2} A_{3}$ for the interval

$$
0.444031833=\frac{6 \sqrt{2}+\sqrt{3}}{23}=\widetilde{c} \leq B<1
$$

occurs on the lower surface of the body $\left(A_{3}, A_{2}, A_{1}\right)$:

$$
\max A_{1} A_{2} A_{3}=\frac{\sqrt{3}}{36}\left(1-B^{2}\right)^{3}
$$

at the point

$$
A_{1}=\frac{1-B^{2}}{\sqrt{2}}, A_{2}=-\frac{1-B^{2}}{2 \sqrt{3}}, A_{3}=-\frac{\sqrt{2}}{6}\left(1-B^{2}\right)
$$

In Figure 2 there is the graph connected with the values of the Table 1.
4. Minimalization results. According to the Section 2 the minimum of $Q=A_{1} A_{1} A_{3}$ is obtained from the expressions

$$
\begin{aligned}
& A_{1} A_{2} E \text { for } A_{2} \geq 0, \\
& A_{1} A_{2} F \text { for } A_{2} \leq 0
\end{aligned}
$$

Actually, only the last alternative will be realized. Therefore, the sign -, characterizing the region-notation, can be omitted.

Table 2.

B	Region	A_{1}	A_{2}	A_{3}	$\min Q$
0.05	$\partial \mathrm{I}$	0.034231	-0.044968	0.024882	-0.000038
0.1	$\partial \mathrm{I}$	0.262374	0.170606	-0.133010	-0.005954
0.2	$\partial \mathrm{I}$	0.489747	0.269737	-0.213725	-0.028234
0.27	$\partial \mathrm{I}$	0.612783	0.274543	-0.222069	-0.037360
$0.274376=\beta_{1}$	$\partial \mathrm{I}$	0.619290	0.273003	-0.221185	-0.037395
0.28	$\partial \mathrm{I}$	0.627436	0.270719	-0.219810	-0.037337
$0.284717=\gamma_{1}$	$\partial \mathrm{I} \cap \mathrm{P}$	0.634079	0.268541	-0.218451	-0.037197
0.285	P	0.634319	0.267964	-0.218773	-0.037186
$0.289393=\gamma_{2}$	$\mathrm{P} \cap \partial \mathrm{III}$	0.637958	0.258988	-0.223541	-0.036934
0.29	$\partial \mathrm{III}$	0.637558	0.258804	-0.223569	-0.036890
0.3	$\partial \mathrm{III}$	0.630918	0.255757	-0.223967	-0.036140
0.4	$\partial \mathrm{III}$	0.559821	0.224215	-0.221370	-0.027786
$0.489950=\delta$	$\partial \mathrm{III}$	0.489238	0.194240	-0.209355	-0.019895
$0.489958=\delta$	I	0.308716	-0.325655	0.197891	-0.019895
0.5	I	0.314515	-0.327111	0.199710	-0.020547
$0.554728=\gamma_{3}$	$\mathrm{I} \cap \mathrm{II}$	0.371011	-0.307904	0.207974	-0.023758
0.6	II	0.414995	-0.290090	0.218305	-0.026281
0.66	II	0.428346	-0.292403	0.223806	-0.028032
$0.667947=\beta_{2}$	II	0.428169	-0.292795	0.223822	-0.028060
0.67	II	0.428053	-0.292886	0.223798	-0.028058
0.7	II	0.423061	-0.293516	0.222059	-0.027574
$0.790542=\gamma_{4}$	$\mathrm{II} \cap \mathrm{P}$	0.369911	-0.278305	0.199329	-0.020521
0.8	P	0.355556	-0.272154	0.199590	-0.019313
0.9	P	0.189474	-0.169004	0.149698	-0.004794
0.99	P	0.019899	-0.019699	0.019500	-0.000008

There appears that the minimum may occur also on the upper boundary дIII of $\left(A_{2}, A_{1}\right)$;

$$
\partial \mathrm{III}: \quad A_{2}=2 A_{1}-\frac{2+B}{1-B^{2}} A_{1}^{2}
$$

\Downarrow

$$
\begin{aligned}
Q & =A_{1} A_{2} E \\
& =6 A_{1}^{3}-11 \frac{2+B}{1-B^{2}} A_{1}^{4}+2 \frac{1+3(2+B)^{2}}{\left(1-B^{2}\right)^{2}} A_{1}^{5}-\frac{2+B}{\left(1-B^{2}\right)^{3}}\left[1+(2+B)^{2}\right] A_{1}^{6}
\end{aligned}
$$

Thus, for the local extremal point on ∂ III there holds

$$
\begin{align*}
9\left(1-B^{2}\right)^{2} & -22(2+B)\left(1-B^{2}\right) A_{1} \\
& +5\left[1+3(2+B)^{2}\right] A_{1}^{2}-3 \frac{(2+B)\left[1+(2+B)^{2}\right]}{1-B^{2}} A_{1}^{3}=0 \tag{11}
\end{align*}
$$

Figure 2

In Table 2 there is a collection of minimal points. Some of them deserve to be mentioned separately.

$$
\begin{aligned}
& \min \min Q=-0.037395325 ; B=\beta_{1}=0.274376470 \in \partial \mathrm{I} \\
& \min \min Q=-0.028059590 ; B=\beta_{2}=0.667947135 \in \mathrm{II}
\end{aligned}
$$

The tip P assumes the role of minimizing point three times. Shifting from $\partial \mathrm{I}$ to P occurs at $B=\gamma_{1}$. This point is found from (6) by aid of the limit process $A_{1} \rightarrow B_{1}$, i.e. at (6) we have to take $A_{1}=B_{1}$. Similarly, (11) with $A_{1}=B_{1}$ yields the shifting point $B=\gamma_{2}$ from ∂ III to P. At $B=\gamma_{4}$ we move from II to P by aid of (10). Between γ_{2} and γ_{4} there exists still another shifting point γ_{3} of the type $\mathrm{I} \cap \mathrm{II}$. The results are:

$$
\begin{aligned}
& \gamma_{1}=0.284716560 \in \partial \mathrm{I} \cap \mathrm{P} \\
& \gamma_{2}=0.289392233 \in \mathrm{P} \cap \partial \mathrm{III} \\
& \gamma_{3}=0.554728151 \in \mathrm{I} \cap \mathrm{II} \\
& \gamma_{4}=0.790541920 \in \mathrm{II} \cap \mathrm{P}
\end{aligned}
$$

Finally, at

$$
B=\delta=0.489949658 \in \partial \mathrm{III}, \mathrm{I}
$$

there occur two simultaneous minima. We may speak about Twin Pits which, at the same time, happen to yield

$$
\max \min Q=-0.019894996 ; B=\delta \in \partial \mathrm{III}, \mathrm{I}
$$

The results of the Table 2 are visualized in Figure 2. In it the points of twin peaks and twin pits are pointed out by dotted circles.

References

[1] Sladkowska, J., On univalent, bounded, non-vanishing and symmetric functions in the unit disc, Ann. Polon. Math. 64 (1996), 291-299.
[2] Tammi, O., On the first coefficient bodies of bounded real non-vanishing univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), 177-190.
[3] Tammi, O., On completing some coefficient estimations for real bounded non-vanishing univalent functions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. Vol. LIV, Vol. XLIII, (2004), 5-20.

Olli Tammi
Department of Mathematics and Statistics
University of Helsinki
PL 68 (Gustaf Hällströmin katu 2b)
FI-00014 Helsingin Yliopisto
Finland
Received June 27, 2005

[^0]: 2000 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. Univalent functions, coefficient bodies.

