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Abstract. We consider a metric space of sequences of uniformly continuous
mappings, acting on a bounded, closed and convex subset of a Banach space,
which share a common convex and lower semicontinuous Lyapunov function f .
We show that for a generic sequence taken from this space, the corresponding
infinite product tends to the unique point where f attains its minimum.

1. Introduction. In a series of recent papers [2], [6], [7], [11] we studied
certain minimization methods for convex functions from the point of view
of the theory of dynamical systems, and obtained several results regarding
the convergence of these methods under the assumption that the function
to be minimized is either uniformly continuous [2], [6], [7] or at least con-
tinuous [11]. In the present paper we consider the case where the objective
function is merely lower semicontinuous. In our treatment the convergence
of the minimization algorithms is cast in the language of (random) infinite
products of operators. The convergence of such products is known to be
of interest in many areas of mathematics and its applications [1], [8], [10].
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We also use the generic approach the aim of which is to show that a typical
(in the sense of Baire category) element of an appropriate complete metric
space has the relevant convergence property. For other applications of this
approach to fixed point theory, nonlinear analysis and optimization see, for
example, [8], [9], [10].
Assume that (X, ‖·‖) is a Banach space, K ⊂ X is a nonempty, bounded,
closed and convex subset of X, and that f : K → R1 is a convex, bounded
and lower semicontinuous function. Set

inf(f) = inf{f(x) : x ∈ K}.

Assume further that there exists x∗ ∈ K such that

(1.1) f(x∗) = inf(f),

and that the following conditions hold:
(i) f is continuous at x∗;
(ii) if {xi}∞i=1 ⊂ K and limi→∞ f(xi) = inf(f), then ‖xi − x∗‖ → 0 as

i →∞.
Denote by A the set of all uniformly continuous mappings A : K → K (for
each ε > 0, there exists δ > 0 such that if x1, x2 ∈ K satisfy ‖x1 − x2‖ ≤ δ,
then ‖Ax1 −Ax2‖ ≤ ε) such that

(1.2) f(Ax) ≤ f(x) for all x ∈ K.

For the set A we define a metric ρ : A× A → R1 by

(1.3) ρ(A,B) = sup{‖Ax−Bx‖ : x ∈ K}, A, B ∈ A.

Clearly, the metric space (A, ρ) is complete. Denote by M the set of all
sequences {At}∞t=1 ⊂ A. Members {At}∞t=1, {Bt}∞t=1 and {Ct}∞t=1 of M will
occasionally be denoted by boldface A, B and C, respectively.
For each A ∈ A set Â = {Ât}∞t=1, where Ât = A, t = 1, 2, . . . .
For the setM we will consider two uniformities and the topologies induced
by them. The first uniformity is determined by the following base:

(1.4)
Ew(N, ε) = {({At}∞t=1, {Bt}∞t=1) ∈ M×M : ρ(At, Bt) ≤ ε,

t = 1, . . . , N},

where N is a natural number and ε > 0. Clearly, the uniform spaceM with
this uniformity is metrizable (by a metric ρw : M×M → R1) and complete.
We equip the set M with the topology induced by this uniformity. This
topology will be called weak and denoted by τw.
The second uniformity is determined by the following base:

(1.5) Es(ε) = {({At}∞t=1, {Bt}∞t=1) ∈ M×M : ρ(At, Bt) ≤ ε, t ≥ 1},

where ε > 0. The uniform space M with this uniformity is also metrizable
(by a metric ρs : M×M → R1) and complete. We equip the setM with the
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topology induced by this uniformity and denote this topology by τs. Since
τs is obviously stronger than τw, it will be called strong.
From the point of view of the theory of dynamical systems, each element
ofM describes a nonstationary dynamical system with a Lyapunov function
f . Also, some optimization procedures in Hilbert and Banach spaces can
be represented by elements of M (see [3], [4]).
Denote by Mu the set of all {At}∞t=1 ∈ M which have the following
property:
(iii) For each ε > 0, there exists δ > 0 such that for each x, y ∈ K
satisfying ‖x− y‖ ≤ δ and each integer t ≥ 1,

‖Atx−Aty‖ ≤ ε.

It is clear that Mu is a closed subset of (M, ρs). We consider the metric
space (Mu, ρs) with the topology induced by the metric ρs.
A sequence {At}∞t=1 ∈ M is called convergent if

An · · ·A1x → x∗ as n →∞, uniformly on K.

A sequence {At}∞t=1 ∈ M is called strictly convergent if for each ε > 0,
there exists a natural number n such that for each integer T ≥ n, each
mapping r : {1, . . . , T} → {1, 2, . . . }, and each x ∈ K,

‖Ar(T ) · · ·Ar(1)x− x∗‖ ≤ ε.

A mapping A ∈ A is called convergent if Â = {Ât}∞t=1 is (strictly) con-
vergent.
Our goal in this paper is to establish the following five results. The
first two are convergence theorems while the last three illustrate the generic
approach.

Theorem 1.1. Let {At}∞t=1 ∈ M be convergent and let ε be a positive num-
ber. Then there exist a natural number n and a neighborhood U of {At}∞t=1

in M with the weak topology such that the following property holds:
For each {Bt}∞t=1 ∈ U , each x ∈ K, and each integer T ≥ n,

‖BT · · ·B1x− x∗‖ ≤ ε.

Theorem 1.2. Let {At}∞t=1 ∈ Mu be strictly convergent and let ε be a
positive number. Then there exist a natural number n and a neighborhood U
of {At}∞t=1 in Mu with the strong topology such that the following property
holds:
For each {Bt}∞t=1 ∈ U , each x ∈ K, each integer T ≥ n, and each mapping

r : {1, . . . , T} → {1, 2, . . . },
‖Br(T ) · · ·Br(1)x− x∗‖ ≤ ε.

Theorem 1.3. There exists a set F ⊂ M which is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology)
subsets of M such that each element of F is convergent.
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Theorem 1.4. There exists a set Fu which is a countable intersection of
open everywhere dense subsets of (Mu, ρs) such that each element of Fu is
strictly convergent.

Theorem 1.5. There exists a set F ⊂ A which is a countable intersec-
tion of open everywhere dense subsets of A such that each element of F is
convergent.

Our paper is organized as follows: the next section contains two lem-
mata on (random) infinite products. The first two theorems are established
in Section 3. The last section is devoted to the proofs of our last three
theorems.

2. Auxiliary results.

Lemma 2.1. Let {At}∞t=1∈M, n be a natural number and ε>0. Then there
exists δ > 0 such that for each {Bt}∞t=1 ∈ M satisfying ({Bt}∞t=1, {At}∞t=1)
∈ Ew(n, δ), the following inequality holds for all x ∈ K:

‖Bn · · ·B1x−An · · ·A1x‖ ≤ ε.

Proof. We prove this lemma by induction on n. It is clear that for n = 1,
the assertion of the lemma holds for any ε > 0.
Assume that k is a natural number and that the assertion of the lemma
holds for any ε > 0 with n = k. We intend to show that the assertion of the
lemma holds with n = k + 1 for any ε > 0. Indeed, given ε > 0, there exists

(2.1) ε0 ∈
(
0,

ε

8

)
such that

(2.2) ‖Ak+1x−Ak+1y‖ ≤
ε

8
for all x, y ∈ K satisfying ‖x− y‖ ≤ ε0.
Using the inductive assumption with n = k and ε = ε0, we see that there
exists

(2.3) δ ∈ (0, ε0)

such that the following property holds:
(iv) For each {Bt}∞t=1 ∈ M satisfying ({Bt}∞t=1, {At}∞t=1) ∈ Ew(k, δ),

‖Bk · · ·B1x−Ak · · ·A1x‖ ≤ ε0 for all x ∈ K.

Assume now that {Bt}t=1 ∈ M,

(2.4) ({Bt}∞t=1, {At}∞t=1) ∈ Ew(k + 1, δ),

and that x ∈ K.
By (2.4) and property (iv),

(2.5) ‖Bk · · ·B1x−Ak · · ·A1x‖ ≤ ε0.
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It follows from (2.5) and the choice of ε0 (see (2.1) and (2.2)) that

(2.6) ‖Ak+1Bk · · ·B1x−Ak+1Ak · · ·A1x‖ ≤
ε

8
.

Relations (2.3), (2.4), (2.1) and (1.4) imply that

‖Bk+1(Bk · · ·B1x)−Ak+1(Bk · · ·B1x)‖ ≤ δ < ε0 <
ε

8
.

When combined with (2.6), this inequality implies that

‖Bk+1Bk · · ·B1x−Ak+1Ak · · ·A1x‖
≤ ‖Bk+1Bk · · ·B1x−Ak+1Bk · · ·B1x‖

+ ‖Ak+1Bk · · ·B1x−Ak+1Ak · · ·A1x‖

≤ ε

8
+

ε

8
< ε.

Thus the assertion of the lemma holds with n = k + 1 for any ε > 0. This
completes the proof of the Lemma 2.1. �

Lemma 2.2. Let {At}∞t=1∈Mu, n be a natural number and ε>0. Then there
exists δ > 0 such that for each {Bt}∞t=1 ∈ Mu satisfying ({Bt}∞t=1, {At}∞t=1)
∈ Es(δ) and each r : {1, . . . , n} → {1, 2, . . . }, the following inequality holds
for all x ∈ K:

‖Br(n) · · ·Br(1)x−Ar(n) · · ·Ar(1)x‖ ≤ ε.

Proof. Once again we use induction on n. It is clear that for n = 1, the
assertion of the lemma holds for any ε > 0.
Assume now that k is a natural number and that the lemma holds for
any ε > 0 when n = k. We intend to show that the assertion of the lemma
holds with n = k + 1 for any ε > 0. Since {At}∞t=1 ∈ Mu, there exists

(2.7) ε0 ∈
(
0,

ε

8

)
such that

(2.8) ‖Aix−Aiy‖ ≤
ε

8
for each natural number i and all x, y ∈ K satisfying ‖x− y‖ ≤ ε0.
Using the inductive assumption with n = k and ε = ε0, we see that there
exists

(2.9) δ ∈ (0, ε0)

such that the following property holds:
(v) For each {Bt}∞t=1 ∈ M satisfying

(2.10) ({Bt}∞t=1, {At}∞t=1) ∈ Es(δ),

each r : {1, . . . , k} → {1, 2, . . . }, and all x ∈ K,

(2.11) ‖Br(k) · · ·Br(1)x−Ar(k) · · ·Ar(1)x‖ ≤ ε0.
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Assume that {Bt}t=1 ∈ M satisfies (2.10), x ∈ K, and r : {1, . . . , k + 1} →
{1, 2, . . . }. Inclusion (2.10) and property (v) imply (2.11).
Therefore the definition of ε0 (see (2.7) and (2.8)) implies that

(2.12) ‖Ar(k+1)Br(k) · · ·Br(1)x−Ar(k+1)Ar(k) · · ·Ar(1)x‖ ≤
ε

8
.

Relations (2.10), (1.5), (2.9) and (2.7) yield

‖Br(k+1)Br(k) · · ·Br(1)x−Ar(k+1)(Br(k) · · ·Br(1))x‖ ≤ δ < ε0 <
ε

8
.

When combined with (2.12), this inequality implies that

‖Br(k+1)Br(k) · · ·Br(1)x−Ar(k+1)Ar(k) · · ·Ar(1)x‖
≤ ‖Br(k+1)Br(k) · · ·Br(1)x−Ar(k+1)Br(k) · · ·Br(1)x‖

+ ‖Ar(k+1)Br(k) · · ·Br(1)x−Ar(k+1)Ar(k) · · ·Ar(1)x‖

≤ ε

8
+

ε

8
< ε.

Thus the assertion of the lemma indeed holds with n = k + 1 for any ε > 0.
This completes the proof of Lemma 2.2. �

3. Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. By property (ii) there is

(3.1) ε0 ∈ (0, ε)

such that

(3.2) if z ∈ K and f(z) ≤ inf(f) + ε0, then ‖z − x∗‖ ≤ ε.

By property (i) there is

(3.3) ε1 ∈ (0, ε0)

such that

(3.4) if z ∈ K and ‖z − x∗‖ ≤ ε1, then |f(z)− f(x∗)| ≤ ε0.

Since {At}∞t=1 is convergent, there is a natural number n ≥ 4 such that

(3.5) ‖An · · ·A1x− x∗‖ ≤
ε1
4
for all x ∈ K.

By Lemma 2.1, there exists a neighborhood U of {At}∞t=1 in M with the
weak topology such that for each {Bt}∞t=1 ∈ U ,

(3.6) ‖Bn · · ·B1x−An · · ·A1x‖ ≤
ε1
4
for all x ∈ K.

Let

(3.7) {Bt}∞t=1 ∈ U .
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Then (3.6) holds. Inequalities (3.5) and (3.6) imply that for all x ∈ K,

(3.8)
‖Bn · · ·B1x− x∗‖ ≤ ‖Bn · · ·B1x−An · · ·A1x‖+ ‖An · · ·A1x− x∗‖

≤ ε1
4

+
ε1
4

< ε1.

Let x ∈ K and let T ≥ n be an integer. Relations (3.8) and (3.4) imply
that

f(Bn · · ·B1x) ≤ inf(f) + ε0.

This inequality implies, in its turn, that

f(BT · · ·B1x) ≤ f(Bn · · ·B1x) ≤ inf(f) + ε0.

When combined with (3.2), this last inequality implies that

‖BT · · ·B1x− x∗‖ ≤ ε.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. By property (ii), there is ε0 ∈ (0, ε) such that
(3.2) holds. By property (i), there is ε1 ∈ (0, ε0) such that (3.4) holds.
Since {At}∞t=1 is strictly convergent, there is a natural number n ≥ 4 such
that the following property holds:
(vi) For each mapping r : {1, . . . , n} → {1, 2, . . . } and each x ∈ K,

‖Ar(n) · · ·Ar(1) − x∗‖ ≤
ε1
4

.

By Lemma 2.2, there exists a neighborhood U of {At}∞t=1 in A with the
strong topology such that for each {Bt}∞t=1 ∈ U , each r : {1, . . . , n} →
{1, 2, . . . }, and each x ∈ K,

(3.9) ‖Br(n) · · ·Br(1)x−Ar(n) · · ·Ar(1)x‖ ≤
ε1
4

.

Now assume that

(3.10)
{Bt}∞t=1 ∈ U , x ∈ K, T ≥ n is an integer, and r : {1, . . . , T} →
{1, 2, . . . }.

Then (3.9) holds. By property (vi),

‖Ar(n) · · ·Ar(1)x− x∗‖ ≤
ε1
4

.

When combined with (3.9), this inequality implies that

‖Br(n) · · ·Br(1)x− x∗‖
≤ ‖Br(n) · · ·Br(1)x−Ar(n) · · ·Ar(1)x‖+ ‖Ar(n) · · ·Ar(1)x− x∗‖

≤ ε1
4

+
ε1
4

< ε1.

When combined with (3.4), this last inequality implies that

f(Br(n) · · ·Br(1)x) ≤ inf(f) + ε0
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and

f(Br(T ) · · ·Br(1)x) ≤ f(Br(n) · · ·Br(1)x) ≤ inf(f) + ε0.

Together with (3.2) this implies that

‖Br(T ) · · ·Br(1)x− x∗‖ ≤ ε,

as asserted. The proof of Theorem 1.2 is complete. �

4. Proofs of Theorems 1.3–1.5. Let A ∈ A and γ ∈ (0, 1). Define
Aγ : K → K by

(4.1) Aγx = (1− γ)Ax + γx∗, x ∈ K.

Clearly, Aγ ∈ A.
Let A = {At}∞t=1 ∈ M and γ ∈ (0, 1). Define Aγ = {Atγ}∞t=1, where for
each natural number t,

(4.2) Atγx = (1− γ)Atx + γx∗, x ∈ K.

It is clear that Aγ ∈ M, and if A ∈ Mu, then Aγ ∈ Mu.
We precede the proofs of Theorems 1.3–1.5 with another lemma.

Lemma 4.1. Let A = {At}∞t=1 ∈ M and γ ∈ (0, 1). Then Aγ = {Atγ}∞t=1

is strictly convergent.

Proof. Let ε > 0. Choose M > 0 such that

(4.3) |f(x)| ≤ M for all x ∈ K.

It follows from (4.2) and the convexity of f that for each natural number t
and each x ∈ K,

(4.4)

f(Atγx) = f((1− γ)Atx + γx∗)

≤ (1− γ)f(Atx) + γf(x∗) ≤ (1− γ)f(x) + γ(x∗)

= (1− γ)f(x) + γ inf(f).

We claim that for each natural number m, the following property holds:
(vii) For each r : {1, . . . ,m} → {1, 2, . . . } and each x ∈ K,

(4.5) f(Ar(m)γ · · ·Ar(1)γx) ≤ (1− γ)mf(x) + [1− (1− γ)m] inf(f).

We prove this claim by using induction on m. Clearly, for m = 1 property
(vii) does hold. Let k be a natural number and assume that property (vii)
holds for m = k. We will show that property (vii) holds with m = k + 1.
To this end, assume that x ∈ K and r : {1, . . . , k+1} → {1, 2, . . . }. Since
property (vii) holds with m = k, we have

(4.6) f(Ar(k)γ . . . Ar(1)γx) ≤ (1− γ)kf(x) + [1− (1− γ)k] inf(f).
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By (4.2), the convexity of f , (1.2) and (4.6),

f(Ar(k+1)γAr(k)γ · · ·Ar(1)γx)

= f((1− γ)Ar(k+1)Ar(k)γ . . . Ar(1)γx + γx∗)

≤ (1− γ)f(Ar(k+1)γAr(k)γ · · ·Ar(1)γx) + γf(x∗)

≤ (1− γ)f(Ar(k)γ · · ·Ar(1)γx) + γ inf(f)

≤ (1− γ)[(1− γ)kf(x) + (1− (1− γ)k) inf(f)] + γ inf(f)

= (1− γ)k+1f(x) + [(1− γ)− (1− γ)k+1 + γ] inf(f)

= (1− γ)k+1f(x) + [1− (1− γ)k+1] inf(f).

This means that property (vii) holds for m = k + 1. Thus we have shown
that property (vii) holds for all natural numbers m. By property (ii), there
is ε0 ∈ (0, ε) such that

(4.7) if z ∈ K and f(z) ≤ inf(f) + ε0, then ‖z − x∗‖ ≤ ε.

Choose an integer n ≥ 4 such that

(4.8) (1− γ)nM + [1− (1− γ)n] inf(f) ≤ inf(f) + ε0.

Assume that T ≥ n is an integer, r : {1, . . . , T} → {1, 2, . . . }, and x ∈ K.
By property (vii), (4.8), (1.2) and (4.3),

f(Ar(T )γ · · ·Ar(1)γx) ≤ f(Ar(n)γ · · ·Ar(1)γx)

≤ (1− γ)nf(x) + [1− (1− γ)n] inf(f)

≤ (1− γ)nM + [1− (1− γ)n] inf(f) ≤ inf(f) + ε0.

When combined with (4.7), this inequality implies that

‖Ar(T )γ · · ·Ar(1)γx− x∗‖ ≤ ε.

Lemma 4.1 is proved. �

Proof of Theorem 1.3. It is easy to see that for each A ∈ M, Aγ → A
as γ → 0+ in the strong topology. Thus the set

{Aγ : A ∈ M, γ ∈ (0, 1)}

is an everywhere dense subset of M with the strong topology.
Let A = {At}∞t=1 ∈ M, γ ∈ (0, 1), and let i ≥ 1 be a natural number. By
Lemma 4.1, Aγ = {Atγ}∞t=1 is strictly convergent. By Theorem 1.1, there
exist a natural number n(A, γ, i) and an open neighborhood U(A, γ, i) of
Aγ in M with the weak topology such that the following property holds:
(viii) For each {Bt}∞t=1 ∈ U(A, γ, i), each x ∈ K, and each integer T ≥

n(A, γ, i),

‖BT · · ·B1x− x∗‖ ≤
1
i
.
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Define

F =
∞⋂
i=1

⋃
{U(A, γ, i) : A ∈ M, γ ∈ (0, 1)}.

Clearly, F is a countable intersection of open (in the weak topology) every-
where dense (in the strong topology) subsets of M.
Assume that C = {Ct}∞t=1 ∈ F . We claim that C is convergent. To prove
this claim, we take an arbitrary ε > 0 and then choose a natural number
i > 1/ε.
There exist A ∈ M and γ ∈ (0, 1) such that

C ∈ U(A, γ, i).

By property (viii), for each x ∈ K and each integer T ≥ n(A, γ, i),

‖CT · · ·C1x− x∗‖ ≤
1
i

< ε.

Thus C is indeed convergent and Theorem 1.3 is proved. �

Proof of Theorem 1.4. It is clear that the set

{Aγ : A ∈ Mu, γ ∈ (0, 1)}
is an everywhere dense subset of Mu in the strong topology.
Let A = {At}∞t=1 ∈ Mu, γ ∈ (0, 1), and let i ≥ 1 be a natural number.
Then Aγ ∈ Mu. By Lemma 4.1, Aγ = {Atγ}∞t=1 is strictly convergent. By
Theorem 1.2, there exist a natural number n(A, γ, i) and an open neighbor-
hood U(A, γ, i) of Aγ in (Mu, ρs) such that the following property holds:
(ix) For each {Bt}∞t=1 ∈ U(A, γ, i), each x ∈ K, each integer T ≥

n(A, γ, i), and each mapping r : {1, . . . , T} → {1, 2, . . . },

‖Br(T ) · · ·Br(1)x− x∗‖ ≤
1
i
.

Define

Fu =
∞⋂
i=1

⋃
{U(A, γ, i) : A ∈ Mu, γ ∈ (0, 1)}.

Clearly, Fu is a countable intersection of open (in the weak topology) eve-
rywhere dense (in the strong topology) subsets of (Mu, ρs).
Assume that C = {Ct}∞t=1 ∈ Fu. To show that C is strictly convergent,
let ε > 0 and choose a natural number i > 1/ε.
There exist A ∈ Mu and γ ∈ (0, 1) such that

C ∈ U(A, γ, i).

By property (ix), for each x ∈ K, each integer T ≥ n(A, γ, i), and each
mapping r : {1, . . . , T} → {1, 2, . . . },

‖Cr(T ) · · ·Cr(1)x− x∗‖ ≤
1
i

< ε.

Thus C is strictly convergent and Theorem 1.4 is proved. �
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The proof of Theorem 1.5 is analogous to that of Theorem 1.4.
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