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The natural transformations TT ("¢ — TT()a

ABSTRACT. For integers r > 1 and n > 2 and a real number a < 0 all
natural endomorphisms of the tangent bundle TT()* of generalized higher
order tangent bundle T® over n-manifolds are completely described.

0. Let us recall the following definitions (see for ex. [3], [8]).

Let FF : Mf, — FM be a functor from the category Mf, of all n-
dimensional manifolds and their local diffeomorphisms into the category
FM of fibered manifolds and their fiber maps. Let B be the base functor
from the category of fibered manifolds to the category of manifolds.

A natural bundle over n-manifolds is a functor F' satisfying BoF = id and
the localization condition: for every inclusion of an open subset i; : U — M,
FU is the restriction py/(U) of pys : FM — M over U and Fiy is the
inclusion py/ (U) — FM.

A natural transformation A : F — G from a natural bundle F into a
natural bundle G is a system of maps A : FM — GM for every n-manifold
M satisfying Gf o A = Ao Ff for every local diffeomorphism f: M — N
between n-manifolds. (Then A : FM — GM is a fibered map covering id s
for any M.)

In other words, natural transformations are morphisms in the category
of natural bundles. That is why, they are intensively studied, see [3].
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Some special natural transformations T'F' — T'F called natural affinors on
F' are very important. A natural affinor on a natural bundle F' is a natural
transformation A : TF — TF such that A : TFM — TFM is a tensor
field of type (1,1) on FM for any n-manifold M. Natural affinors play an
important role in the theory of generalized connections I' : TFM — TFM
on FM. The Frolicher—Nijenhuis bracket [I', A] of a connection I on F'M
with a natural affinor A on F'M is a generalized torsion of I'. That is why,
natural affinors have been studied in many papers: [2], [6], etc.

All natural transformations A : ' — G for some natural bundles are
classified, see e.g. [1], [3], [4], [7], etc. For example, in [7] the second author
classified all natural endomorphisms A : TT™ — TT) where T =
(J"(.,R)o)* is the vector r-tangent natural bundle, and reobtained a result
from [2] about natural affinors on T") saying that the vector space of all
natural affinors on 7(") is 2-dimensional.

In [5], the second author extended the concept of vector r-tangent bundles
and introduced the concept of generalized higher order tangent bundles. In
[6], the second author extended the result from [2]. He proved that for
every a < 0 and every natural numbers r and n > 2 every natural affinor
on generalized higher order tangent bundle 7@ is a constant multiple of
the identity affinor.

In the present note we generalize the results of [2], [6] and [7]. We prove
that for natural numbers r and n > 2 and a negative real number a every
natural transformation A : TT()e — T()a ig o constant multiple of the
tangent bundle projection p? : TT()e — T():a  Next we prove that for
n,,a as above the vector space of all natural transformations A : TT(")-¢ —
TT)e over A : TT)e — T4 js 2-dimensional and we construct the
basis of this vector space. In other words, for integers » > 1 and n > 2
and a negative real number a < 0 we classify all natural endomorphisms
A TTMe — 7T gyer n-manifolds. In particular, we reobtain the
result of [6].

The usual coordinates on R” are denoted by z* and 9; = %, i=1,...,n.
All manifolds and maps are assumed to be of class C*°.

1. Let us cite the notion of T M, [5].

The linear action o® : GL(n,R) x R — R, al9(B,z) = |det(B)|*«
defines the natural vector bundle 790\ = LM x o R (associated to
the principal bundle LM of linear frames). Every embedding ¢ : M — N
of n-manifolds induces a vector bundle mapping T(070)7“¢ = Ly X (o) idR :
T©0ap — 700N, Let

T M = {jlo | o is a local section of TN, o(x) =0, 2z € M}

be the vector bundle over M of all r-jets of local sections of T(:0):a)f
with target O with respect to the source projection. We set Trap =
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(T™*M)*, the dual vector bundle. Every embedding ¢ : M — N of n-
manifolds induces a vector bundle mapping T7*%p : T™*M — TN,
Jzo = (T 70000 6 5 0 1), and (next) it induces a vector bundle
mapping T %p = (T7%)*)~1 : TUeM — TUAN over ¢, and we
obtain a natural vector bundle 7% over n-manifolds. (For a = 0 we get
the 7-th order vector tangent bundle 7). That is why T)*M is called
the generalized higher order tangent bundle.)

T©0:a)f is the bundle of densities with weight a. T()M appears if
we consider linear differential operators D € Diff"(C(T%02M)y, R) of
order < 7 on the C°(M)-module C°(T9¢M )y of germs at x € M of
fields of densities on M with weight a vanishing at x. These operators
are in bijection with elements I(D) € ngr)’aM . This bijection is given
by I(D)(jro) = D(germy(o)), o is a field of densities of weight a on M
vanishing at z. Thus T("):%M is the vector bundle of such operators.

2. In this section we study natural transformations C' : TT():¢ — T("): gyer

n-manifolds. An example of such a transformation is the tangent projection
pl 7T — T ) for any n-manifold M.

Proposition 1. For natural numbers r and n > 2 and a real number a < 0
every natural transformation C : TT)% — T oper n-manifolds is a
constant multiple of the tangent projection p* : TT(")-e — T(r).a

Proof. We modify the proof of Proposition 1 in [6] as follows.

From now on the set of all & € (N U {0})" with 1 < |a| < r will be
denoted by P(r,n).

Clearly, every section of T(09CR" = LR" x o(e) R can be considered as
a real valued function f on R’ satisfying the transformation rule

puf(x) = | det(do(T—z 0 9 0 Tpm1())|* - fo 0™ ()
for every local diffeomorphism ¢ : R® — R", where 7, : R" — R" is the
translation by y € R"™. Then any element v from the fibre T(T)’aR” of
T(eR™ over 0 is a linear combination of the (j5z®)* for all a € P(r,n),
where the (jgz®)* form the basis dual to the ba51s jox® € Ty "R™. From
now on we denote the coefficient of v corresponding to (jz ) by [v]a-

Of course, any natural transformation C' as above is (fully) determined by
the contractions (C(u), jjz®) € R foru € (TT)*)gR"= R"x (VT ")) R"
=R" x Tér)’aR" X Tér)’aR" and « € P(r,n), jhz* € Ty "R™

We are going to prove that C is determined by the values (C'(u), ji(x!)) €
R for u € (TT")*)oR", where ji(z') € T5“R".

Ifa=(aq,...,an) € P(ryn) witha;+---+a,-1 > 1and 7 € R, then the
diffeomorphism ¢, , = (x!,... 2" 1 2" — T(;Ul)o‘l oo (a7 hen-1) sends
Jo((z™)* ") e TyR™ into 6((56 +7(h) - (@t (as
o = (xh, 2" e o (ah)r (@) 1) and det(do(T_g, () ©
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Yar 0 Ty)) = 1 for any y € R"). Then by the naturality of C' with re-
spect to the diffeomorphisms ¢, -, the values (C(u), j5((z" + 7(x1)™ -

(" hyen-1)anth)) for 4 € (TT)*)oR"™ and 7 € R are determined by the
values (C(u), j5((2™)2*1)) for u € (TT)*)gR™. On the other hand, given
u € (TT)*)R™ the value ﬁ(C(u),jSz“) is the coefficient on 7 of the
polynomial (C(u), j5((z" + 7(x!)* - ...« ("~ 1)an-1)2nF1)) with respect to
7. Therefore the values (C(u), jz®) for u € (TT")*)sR™ are determined
by the values (C(u), j§((z™)* 1)) for u € (TT4)eR"™. Then C is fully
determined by the values (C(u),j5((z™)")) for u € (TT)*)R™ and i =
1,...,7. Fori € {1,...,r} the diffeomorphism ¢; = (! — (2™)!,22,... ")
sends ji(z!) into j§(x' + (2")) (as ¢; ' = (2! + (2)),22,...,2") and
det(do(T_yp,(y) © pi 0 1y)) = 1 for any y € R™). Then by the naturality
of C with respect to ;, the values (C(u),j5((2™)?)) for u € (TTT*)R"
are fully determined by the values (C(u),j5(z')) for u € (TT")%)R™
That is why C is fully determined by the values (C(u),7j5(z!)) € R for
u e (TTMe)R™ = R™ x TR x T\ "R™,

We continue the proof of the proposition. For any ¢t € Ry and any
a € P(r,n) the homothety a; = (tz!,... ta™) sends jiz® € T;""R" into
tra-laljrpe e (jz®)* into t1*1=@ . (jra®)*. Then (since a < 0) by the
naturality of C' with respect to a; and the homogeneous function theo-
rem [3] we deduce that given u = (uy,us,u3) € (TTM4)R" = R™ x
Tér)’aR” X Tér)’aR”, up = (ul,...,uf) € R", ug,ug € Tér)’aR" we have
(€. 5(@")) = Sy Adlugle, + 30y ilusle, + -+, where Ay, p; are the
reals, the dots denote the linear combination of monomials in u%, .oo,ul of
degree 1 —na and ¢; = (0,...,1,...,0) € P(r,n), 1 in the i-th position.

For anyt € Ry and k = 1,...,n the homothety bf = (2',... tz*, ..., z")
(only the k-th position is exceptional) sends (jj(z%))* € Ty"“R" into
t%=(jo(2"))* for i = 1,...,n. Then, by the naturality of C' with respect to
bf and a < 0,

(C(u), ji(x") = Auale, + plusle, + plug)' = (uf) ™. (uf)

for real numbers A, p and p.

Using the invariance of A with respect to ¢ = (z!, 2% + 2!, 23,... 2")
(only the second position is exceptional) we get that p = 0.

On replacing C by C — Ap” we can assume that A = 0, i.e.

(%) (C(u), 5§ (z1)) = nlus]e,
for real number p. In particular, if n > 2,
() (C(05 1), g (")) = (C(e2,w,0), j§ (")) = 0

for any w € TST)’QR", where ()€ is the complete lift of vector fields to 7("):@.
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Clearly, the proof of the proposition will be complete after proving that
p=0,ie. (C(0,0,(5(z1))*),j5(x')) = 0. But (if n > 2) we have
0= (C(((+*)"31) ), b (=)
(***) = <C(07w7 (]S(xl))*)hy

where w = (j§((a2)"))".
Let us explain (x * ). The equality
(C(0,w, (j5 (1)), dg (1)) = (€C(0,0, (G5 (1)), d5 (1)
is an immediate consequence of the formula ( ).
We prove that 0 = (C(((x?)" 81) w),db(x1)). Let us consider the dif-
feomorphism ¢ = (z! + r}rl (x2)r ac2 ,x™). Clearly, 1 sends 02 into
0o + (z%)701. Tt is easily seen that det(do(T y ot ory)) = 1 for any

y € R™ and jip = id. Hence ¢ preserves ji(z!) € Ty™*R™. Then using
the naturality of C' with respect to ¢ from (xx) it follovvs that (C'((02 +

(x2)70,)¢ W), Jo(xh)) = 0 for any w € T() R"™. Now, by () we obtain

(C((#*) 1) ), b (1)) = (C((02 + (2°)701) ), Jb (1)) = 0.
The flow of (z2)70; is ¢ = (z' + t(z?)", 22 ...,x”) and det(do(7_y,(y) ©
pro1y)) =1 for any y € R". Then
(o unds(@) = . T 00, ")

_ C‘li|t:0<T<T>’“<<pt><w>,j6<x1>>

d .
= %u:o <wa]0(3«"1 © SOt)>

— (it (G ow0))

= (w, jo((2*)" 0ra"))
<w J6((@*)")

Then ((xZ)ral)% = (j5(x))* + B under the isomorphism V, TR =
TO(T)’CLR”, where 3 is a linear combination of the (j5(z%))* # (j5(zh)*.
Now, by (*)

(C(((@?)01) ), dg (") = (C(0,w, (G5 () + ), G5 (ah))
. .
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3. The tangent map Tp : TT)4M — TM of the bundle projection p :
T M — M defines a natural transformation over n-manifolds.

Proposition 2. For natural numbers r and n and for a real number a <
0 every natural transformation B : TT")® — T over n-manifolds is a
constant multiple of T'p.

Proof. Clearly, every natural transformation B as in the proposition is
uniquely determined by the contractions (B(u), dpz!) for u = (uy,us,u3) €
(TT™M2)R" = R" x T\V"R" x T{V“R". Using the invariance of B
with respect to the homotheties a; = (tx!,...,tz") for t € Ry and the
homogeneous function theorem we deduce (similarly as in the proof of
Proposition 1) that (B(u),dox!) for v = (u1,us,u3) € (TTM4)R" =
R™ x Tér) “R™ x TO(T)’GR" is the linear combination (with real coefficients) of
the u%, ...,u} and it is independent of up and u3, where u; = (u%, .,ul) €
R™. Next, using the invariance of B with respect to the homotheties
by = (o', tx?, ... ta") we see that (B(u),dox') is proportional (by a real
number) to ul = (Tp(u), doz"). O

4. Let A : TTUeM — TT)a)M be a natural transformation over n-
manifolds. We say that a natural transformation A : TT)0 N — TT (e[
over n-manifolds is over A if pT 0 A = A.

If B: TTMa)M — T)a) is another natural transformation over n-
manifolds, we define a natural transformation

AP = (A, B) : 7T M — TN iy T M=y TN ¢ TTT)eM

Clearly, AP is over A. We call AP the B-vertical lift of A.

In particular, considering p? : TT")M — T(")%)\f we produce natural
transformation ApT : TTMapf — TTTa)M over A. The above natural
transformations A? are of vertical type, i.e. they have values in V(@)

IfA:TTO M — VT MET0)e N x5 T2 M is a natural transfor-
mation of vertical type over A, then A = (A, B) for natural transformation
B=prooA: TTWe)M — Tapf je. A= AP for some B.

Then applying Proposition 1 we obtain the following proposition.

Proposition 3. Let r and n > 2 be natural numbers and a be a negative
real number. Let A : TT)@M — TN be a natural transformation over
n-manifolds. Then every natural transformation A : TT"eM — VT () )f

over n-manifolds of vertical type over A is a constant multiple of ApT.

5. Let A € R. For every n-manifold M we define AW . TT"apf —
TT)2 )M by

AN (W) = T(Nidpy,ap) (), v € TTTAM .
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Clearly AX : TT():0 — TT("):@ i a natural transformation over A = \p” :
7T _, 7r)a.

Proposition 4. Let A € R. Ifr and n > 2 are natural numbers and a s
a negative real number, then every natural transformation A : TT)e —

TT") over n-manifolds over A = A\p* is a linear combination of ApT and
AP with real coefficients.

Proof. Let A : TT:eM — TT)@M be a natural transformation over
n-manifolds over A. The composition Tpo A : TT()@M — TM is a natural
transformation. By Proposition 2, there exists the real number p such that
Tpo A = pTp. Clearly, Tpo AY = Tp. Then A — pAWN . TTapf —
TT™-2) is of vertical type. Then Proposition 3 ends the proof. ]

Remark. Every natural transformation A : TT)@ M — TTT)CM over
n-manifolds is over A = pT o A : TT"e)f — T)apf So, Proposition 4
together with Proposition 1 gives a complete description of all natural trans-
formations TT()-% M — TT ()% )M over n-manifolds in the case where a < 0,
r>1and n > 2.

6. As a corollary of Proposition 4 we get immediately the following fact.

Corollary 1 ([6]). If r and n > 2 are natural numbers and a is a negative
real number, then every natural affinor A : TT — TT)a op T pper
n-manifolds is a constant multiple of the identity affinor.

7. Similarly as 7" starting from the action GL(n,R) x R — R given by
(B, z) — sgn(det(B))|det(B)|% instead of a(® : GL(n,R) x R — R, we
can define natural vector bundles T(")-% over n-manifolds. Using obviously
modified arguments as in Items 3-6 we obtain the following facts.

Proposition 1°. For natural numbers r and n > 2 and a real number
a < 0 every natural transformation C : TT)* — T(i)’“ over n-manifolds
is a constant multiple of the tangent projection p* : TT()@ — T()a,

Proposition 2’. For natural numbers r and n and for a real number a <
0 every natural transformation B : TTM — T over n-manifolds is a
constant multiple of Tp, where p : T")M — M is the bundle projection.

Similarly as in Items 4 and 5 we define AP" L TTae - yTMa and
AN r7e ),

Proposition 3°. Let r and n > 2 be natural numbers and a be a negative
real number. Let A : TT)@M — TN be o natural transformation over
n-manifolds. Then every natural transformation A : TT"eM — VT () )f

over n-manifolds of vertical type over A is a constant multiple of ApT.
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Proposition 4°’. Let A € R. If r and n > 2 are natural numbe7’§ and a
is a negative real number, then every natural transformation A : TT(2 —

TT") over n-manifolds over A = A\p™ is a linear combination of ApT and
AP with real coefficients.

Corollary 1’ ([6]). If r and n > 2 are natural numbers and a is a negative
real number, then every natural affinor A : TT2 — TT)a on T pper
n-manifolds is a constant multiple of the identity affinor.
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