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Connections on fibered squares

Abstract. We clarify that the theory of projectable natural bundles over
fibered manifolds is essentially related with the idea of fibered square. We
deduce the basic properties of the geometrically most interesting kinds of
fibered squares and of the corresponding connections. Special attention is
paid to linear square connections of order (q, s, r).

Section 1 of the present paper is devoted to the basic properties of a pro-
jectable bundle functor F on the category FMm,n of fibered manifolds with
m-dimensional bases and n-dimensional fibers and their local isomorphisms
over a bundle functor F on the categoryMfm of m-dimensional manifolds
and their local diffeomorphisms. Then we are interested in the fact that
FY is a fibered square for every fibered manifold Y → M . (We prefer
this terminology introduced by J. Pradines, [8], to the equivalent notion of
fibered fibered manifold by W. Mikulski, [5].) In Section 2 we discuss the
most important kinds of fibered squares, namely the principal, associated
and vector ones. Special attention is paid to the (q, s, r)-jet prolongation of
a fibered square.
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In Section 3 we introduce the general concept of square connection and
discuss the principal and linear square connections in more details. In par-
ticular, we prove that the operation of associating square connection es-
tablishes a bijection between the principal square connections on the linear
frame square of a vector square Z and the linear square connections on Z.
In the last section we define the linear square connections of order (q, s, r)
on a fibered manifold Y and deduce that they are in bijection with the
principal square connections on the frame square P q,s,rY of order (q, s, r).
Finally we remark that the concept of torsion can be extended from the
classical case of linear r-th order connections on a manifold M to the linear
square connections of order (q, s, r) on a fibered manifold Y .

All manifolds and maps are assumed to be infinitely differentiable. Unless
otherwise specified, we use the terminology and notation from the book [3].

1. Natural bundles over (m, n)-manifolds. The concept of a natural
bundle F over m-manifolds was introduced by A. Nijenhuis, [6]. Using the
terminology of [3], one can say that F is a bundle functor on the category
Mfm. It is well known that every natural bundle over m-manifolds has a
finite order r and the r-th order bundles are in bijection with the actions
of the r-jet group Grm = inv Jr0 (Rm,Rm)0, [3]. If we replace Mfm by the
category FMm,n, we can introduce

Definition 1. A natural bundle over (m,n)-manifolds is a bundle functor
on FMm,n.

The inclusion FMm,n ⊂Mfm+n implies that every natural bundle over
(m+ n)-manifolds restricts to a natural bundle over (m,n)-manifolds.

By [3], every bundle functor F on FMm,n has finite order. However, we
shall need a more subtle characterization of the order of F that is based
on the concept of (q, s, r)-jet. Write FM for the category of all fibered
manifolds and all their morphisms. Having two fibered manifolds p : Y →
M and q : Z → N and two FM-morphisms f, g : Y → Z with base
maps f, g : M → N , we say that f and g determine the same (q, s, r)-jet
jq,s,ry f = jq,s,ry g, s ≥ q ≤ r, at y ∈ Y , if

(1) jqyf = jqyg, jsy(f |Yx) = jsy(g|Yx), jrxf = jrxg, x = p(y)

([1], [3]). We write Jq,s,r(Y, Z) for the space of all (q, s, r)-jets of FM-
morphisms of Y into Z. We say that the order of functor F is (q, s, r),
if

(2) jq,s,ry f = jq,s,ry g implies Ff |Yy = Fg|Yy , y ∈ Y ,

for every pair of FMm,n-morphisms f, g : Y → Z.
Write Rk,l for the product fibered manifold Rk×Rl → Rk. We define the

space of (k, l)-dimensional velocities of order (q, s, r) on a fibered manifold
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Y →M by

(3) T q,s,rk,l Y = Jq,s,r0,0 (Rk,l, Y ) .

Using the jet composition we extend T q,s,rk,l into a bundle functor on the cat-
egory FM. In particular, we introduce the principal bundle of all (q, s, r)-
frames on Y , m = dimM , m+ n = dimY , by

(4) P q,s,rY = inv Jq,s,r0,0 (Rm,n, Y ) ,

where inv indicates the invertible (q, s, r)-jets. Its structure group is

Gq,s,rm,n = inv Jq,s,r0,0 (Rm,n,Rm,n)0,0

and both multiplication in Gq,s,rm,n and the action of Gq,s,rm,n on P q,s,rY are
given by the jet composition. Analogously to the manifold case, every
FMm,n-morphism f : Y → Y induces a principal bundle morphism P q,s,rf :
P q,s,rY → P q,s,rY .

We are going to the concept of projectable natural bundle over (m,n)-
manifolds. This requires the following idea.

Definition 2. A fibered square is a commutative diagram

(5)

Z
ϕ−−−−→ Y

q

y yp
N

ψ−−−−→ M

where all arrows are surjective submersions and even the induced map Z →
Y ×M N , z 7→

(
ϕ(z), q(z)

)
is a surjective submersion.

Fibered square (5) can be also denoted by (Z, q,N, ϕ, ψ, Y, p,M). In
short, we write (Z,N, Y,M) or (Z,N) or Z. We say that M is the base of
Z. The arrow ϕ or ψ or q or p in (5) can be called the upper or lower or
left or right bundle, respectively.

Let xi, yp or xi, va be some local fiber coordinates on Y orN , respectively.
The assumption Z → Y ×M N is a fibered manifold implies there are some
additional fiber coordinates zs on Z. The local coordinates

(6)
xi, yp, va, zs , i = 1, . . . ,m, p = 1, . . . , n,

a = 1, . . . , k, s = 1, . . . , l ,

on Z express the fact that fibered squares are locally isomorphic to the
products Rm × Rn × Rk × Rl.

Let F be a natural bundle overm-manifolds. By a natural transformation
t : F → F we mean a system tY : FY → FM of FM-morphisms over idM
such that

tY ◦ Ff = Ff ◦ tY
for every FMm,n-morphism f : Y → Y over f : M →M .
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Definition 3. A natural bundle F over (m,n)-manifolds is called pro-
jectable, if there is a natural bundle F over m-manifolds and a natural
transformation t : F → F such that

(7)

FY −−−−→ Y

tY

y yp
FM −−−−→ M

is a fibered square for every fibered manifold p : Y →M .

For example, the functor T q,s,rk,l is projectable over T rk . The functor P rY
of the classical r-th order frames on a fibered manifold Y is not projectable.
In general, a bundle functor G on the categoryMf of all manifolds induces
a natural bundle over (m,n)-manifolds transforming p : Y →M into

(8)

GY −−−−→ Y

Gp

y yp
GM −−−−→ M

The fact (8) is a fibered square is proved in Section 38 of [3]. In particular,
the tangent bundle TY of a fibered manifold Y is a very important exam-
ple of fibered square. Let F be a projectable natural bundle over (m,n)-
manifolds of order (q, s, r) over F , so that F is of the order r. From the mani-
fold case we know FM = P rM [F 0, µ], where F 0 = F 0Rm and µ is the action
of Grm on F 0 induced by F . Analogously we obtain FY = P q,s,rY [F0,0, λ],
where F0,0 = F0,0Rm,n and the left action λ of Gq,s,rm,n on F0,0 is induced by
F . Moreover, the natural transformation t induces a surjective submersion
τ : F0,0 → F 0 that is %-equivariant, where % : Gq,s,rm,n → Grm is the canonical
group homomorphism.

Conversely, consider a left action λ of Gq,s,rm,n on a manifold S, a left
action µ of Grm on a manifold W and a surjective %-equivariant submersion
τ : S → W . Then we define FY = P q,s,rY [S, λ], FM = P rM [W,µ] and
tY = {πY , τ}, where πY : P q,s,rY → P rM is the canonical projection.
Moreover, for every FMm,n-morphism f : Y → Y over f : M → M we
define Ff = {P q,s,rf, idS} : FY → FY and Ff = {P rf, idW }. In the same
way as in the manifold case, one verifies

Proposition 1. The projectable natural bundles over (m,n)-manifolds of
order (q, s, r) are in bijection with the above triples

(
(S, λ), (W,µ), τ

)
.

2. Fibered squares. Consider another fibered square

(9)

Z
ϕ−−−−→ Y

q

y yp
N

ψ−−−−→ M
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A fibered square morphism of (5) into (9) is a quadruple of maps f : Z → Z,
f1 : N → N , f2 : Y → Y , f0 : M → M such that all squares of the cube in
question commute. This defines the category FS of fibered squares.

The concept of principal bundle is modified to the square case as follows.
Consider a fibered manifold p : Y → M , two principal bundles P (Y,G),
Q(M,H) and a surjective group homomorphism % : G→ H.

Definition 4. The fibered square

(10)

P −−−−→ Y

q

y yp
Q −−−−→ M

is called a principal square (or a fibered principal bundle), if q is a principal
bundle morphism with the associated group homomorphism %.

In other words, q(ug) = q(u)%(g) for all u ∈ P , g ∈ G.
For example

(11)

P q,s,rY −−−−→ Y

πY

y yp
P rM −−−−→ M

is a principal square with respect to the canonical group homomorphism
% : Gq,s,rm,n → Grm.

In general, let λ or µ be a left action of G or H on a manifold S or
W , respectively, and τ : S → W be a %-equivariant surjective submersion.
Construct the associated bundles P [S, λ] and Q[W,µ]. Then

(12)

P [S, λ] −−−−→ Y

{q,ν}
y yp

Q[W,µ] −−−−→ M

is a fibered square, which is said to be associated to (10).
In particular, in the situation of Section 1, one can say that FY is an

associated square

(13)

P q,s,rY [S, λ] −−−−→ Y

{πY ,τ}
y yp

P rM [W,µ] −−−−→ M

The concept of vector bundle can be modified to the square case as follows.

Definition 5. A fibered square (5) is called a vector square, if both ϕ :
Z → Y and ψ : N → M are vector bundles and q : Z → N is a linear
morphism with the base map p : Y →M .
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An important example of a vector square is the tangent square TY of a
fibered manifold Y .

The linear frames in the individual fibers of vector bundle N →M form
a principal bundle PN with structure group GL(k,R), which is called the
linear frame bundle of N . Clearly, PTM = P 1M is the first order frame
bundle of M . A linear frame (A1, . . . , Ak, Ak+1, . . . , Ak+l) in a fiber Zy of
vector bundle Z → Y will be called projectable, if (q(A1), . . . , q(Ak)) is a
linear frame in Np(y). Write ΠZ for the space of all projectable linear frames
in the fibers of Z. LetGL(k, l,R) ⊂ GL(k+l,R) be the subgroup of all linear
isomorphisms projectable with respect to the projection Rk × Rl → Rk.
The canonical coordinates on G(k, l,R) are aab , a

s
a, a

s
t . Then ΠZ → Z

is a principal bundle with structure group G(k, l,R). Our construction
yields a canonical projection κ : ΠZ → PN and a group homomorphism
% : G(k, l,R)→ GL(k,R). Clearly,

(14)

ΠZ −−−−→ Z

κ

y yq
PN −−−−→ N

is a principal square with the associated group homomorphism %.

Definition 6. (14) will be called the linear frame square of the vector square
Z.

Proposition 2. For every manifold Y , we have an identification

(15) Π(TY ) ≈ P 1,1,1Y .

Proof. Any local fiber coordinates xi, yp on Y induces the additional coor-
dinates xij , y

p
i , y

p
q on P 1,1,1Y . Then we obtain (15) by the same identification

as in the manifold case. �

The (q, s, r)-jet prolongation of a fibered square was introduced by W. Mi-
kulski, [5]. We recall his ideas.

Definition 7. A section of fibered square Z is an FM-morphism

σ : (Y →M)→ (Z → N)

satisfying ϕ ◦ σ = idY .

Clearly, the base map σ : M → N satisfies ψ ◦ σ = idM . For example,
the sections of the tangent square TY are the projectable vector fields on
fibered manifold Y .

Definition 8. The space Jq,s,rZ of (q, s, r)-jets of local sections of a fibered
square Z is called the (q, s, r)-jet prolongation of Z.
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Clearly,

(16)

Jq,s,rZ −−−−→ Zy y
JrN −−−−→ N

is a fibered square. If (Z,N) is a vector square, then (16) is a vector square,
too.

We underline that Jq,s,rTY is used as an important idea e.g. in [4].

3. Square connections. We recall that, on an arbitrary fibered mani-
fold Y → M , a connection can be considered either as the lifting map
Y ×M TM → TY or as a section Y → J1Y , [3].

Definition 9. A square connection on fibered square (5) is a pair of q-
related connections Γ on Z → Y and ∆ on N →M .

If we consider both Γ and ∆ in the lifting form, then the q-relatedness
means that the following diagram commutes

(17)

Z ×Y TY
Γ−−−−→ TZ

q×pTp

y yTq
N ×M TM

∆−−−−→ TN

Of course, ∆ is determined by Γ.
In the local coordinates (6), the equations of Γ are

(18)
dva = F ai (x, v) dxi ,

dzs = F si (x, y, v, z) dxi + F sp (x, y, v, z) dyp .

The first line are the equations of ∆.
The equations (18) imply that a square connection Γ over ∆ is equivalent

to a section of the (1, 1, 1)-jet prolongation of Z, i. e. to a commutative
diagram

(19)

J1,1,1Z
Γ←−−−− Zy y

J1N
∆←−−−− N

where Γ and ∆ are sections.
A linear square connection on a vector square is defined by the require-

ment that both Γ and ∆ are linear. In the linear fiber coordinates (6), the
equations of Γ are

(20)
dva = Γabi(x)v

bdxi ,

dzs =
(
Γsai(x, y)v

a+Γsti(x, y)z
t
)
dxi+

(
Γsap(x, y)v

a+Γstp(x, y)z
t
)
dyp .
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Given a principal square (P,Q, Y,M), a square connection (Γ,∆) is said
to be principal, if both Γ and ∆ are principal connections. Analogously
to the manifold case, every principal square connection induces a square
connection on every associated square.

In particular, a vector square Z is an associated square to its linear frame
square ΠZ. One verifies easily that every principal square connection on
ΠZ induces a linear square connection on Z. Using (20), one proves by
direct evaluation

Proposition 3. The construction of associated square connections estab-
lishes a bijection between the principal square connections on ΠZ and the
linear square connections on a vector square Z.

4. Linear square connections of order (q, s, r). It is remarkable that
several other properties of connections on fibered manifolds can be extended
to fibered squares. We are going to discuss an interesting special case in
details.

Every fibered manifold p : Y →M induces a vector square

(21)

Jq,s,rTY
ϕ−−−−→ Y

q

y yp
JrTM

ψ−−−−→ M
where q, ϕ and ψ are the canonical projections. Analogously to the manifold
case, we introduce

Definition 10. A linear square connection of order (q, s, r) on a fibered
manifold Y is a linear splitting

(22)

TY
Γ−−−−→ Jq,r,sTY

Tp

y yq
TM

∆−−−−→ JrTM,

i.e. Γ or ∆ is a linear morphism of vector bundles over Y or M , respectively,
ϕ ◦ Γ = idTY , ψ ◦∆ = idTM and diagram (22) commutes.

The underlying map ∆ is a classical linear r-th order connection on M
([2], [7]).

Since P q,s,r is a bundle functor on FMm,n, every projectable vector field
η on Y induces the flow prolongation Pq,s,rη, which is a vector field on
P q,s,rY . Since P q,s,r is a functor of the order (q, s, r), the value of Pq,s,rη
at every u ∈ P q,s,ry Y depends on jq,s,ry η only, [4]. This defines a map

(23) i : Jq,s,rTY ×Y P q,s,rY → TP q,s,rY .

Lemma. i is a diffeomorphism.



Connections on fibered squares 75

Proof. We have P q,s,rY ⊂ T q,s,rm,n Y . Even in the fibered case there is an
exchange isomorphism

(24) κY : T q,s,rm,n (TY → TM)→ T (T q,s,rm,n Y )

with the property

(25) T q,s,rm,n η = κY ◦ T q,s,rm,n η ,

where T q,s,rm,n η is the flow prolongation of η. For every Q ∈ TuP
q,s,rY we

have κ−1
Y (Q) ∈ T q,s,rm,n (TY → TM) = Jq,s,r0,0 (Rm,n, TY → TM). Since

u ∈ Jq,s,r0,0 (Rm,n, Y ), we can construct the jet composition κ−1
Y (Q) ◦ u−1 ∈

Jq,s,ry (Y, TY ). Let π : TY → Y be the bundle projection. We have
T q,s,rm,n π

(
κ−1
Y (Q) ◦ u−1

)
= (T q,s,rm,n π)

(
κ−1
Y (Q)

)
◦ u−1 = u ◦ u−1 = jq,s,ry idY ,

so that κ−1
Y (Q) ◦ u−1 ∈ Jq,s,ry TY . By (25), i

(
κ−1
Y (Q) ◦ u−1, u

)
= Q. This

proves our claim. �

Since P q,s,r is a functor with values in the category of principal bundles,
Pq,s,rη is a right-invariant vector field on P q,s,rY . Thus, every linear split-
ting Γ : TY → Jq,s,rTY defines a principal connection Γ̃ on P q,s,rY in the
lifting form Γ̃ : P q,s,rY ×Y TY → TP q,s,rY by

(26) Γ̃(u, V ) = i
(
Γ(V ), u

)
,

u ∈ P q,s,ry Y , V ∈ TyY . In the same way, ∆ : TM → JrTM induces a
principal connection on P rM . Thus, we have proved

Proposition 4. The rule (26) establishes a bijection between the linear
square connections of order (q, s, r) on Y and the principal square connec-
tions on (P q,s,rY, P rM).

Remark. The torsion of a linear r-th order connection ∆ on M can be
defined in two different ways. The first one, due to A. Zajtz, [7], uses the
truncated bracket of vector fields. The second one, due to P. C. Yuen, [9],
takes into account the associated principal connection ∆̃ on P rM and con-
structs the covariant exterior differential of the solder form of P rM with
respect to ∆̃. In [2] we clarified that both definitions are naturally equiv-
alent. We remark that each of these approaches can be generalized to the
square case in a direct way.
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[1] Doupovec, M., I. Kolář, On the jets of fibered manifolds morphisms, Cah. Topol. Géom.
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