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Abstract. We give a new elementary proof that the condition of rotative-
ness assures in all Banach spaces, the existence of fixed points of nonexpan-
sive mappings, even without weak compactness, or another special geometric
structure.

1. Introduction and Preliminaries. Let C be a nonempty closed convex
subset of a Banach space E and T : C → C be a nonexpansive mapping, i.e.

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.(1)

In general, to assure the existence of fixed points for nonexpansive map-
pings some assumptions concerning the geometry of the space are added,
see [2], [1].

Given integer n ≥ 2 and real a ∈ [0, 1), we say that a mapping T : C → C
is (a, n)-rotative if for any x ∈ C,

(2) ‖x− Tnx‖ ≤ a‖x− Tx‖.
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We will simply say that the mapping is n-rotative if it is (a, n)-rotative
with some a < n, and rotative if it is n-rotative for some n ≥ 2.
In 1981, K. Goebel and M. Koter [3] proved the following theorem:

Theorem 1. If C is a nonempty closed convex subset of a Banach space
E, then any nonexpansive rotative mapping T : C → C has a fixed point.

Note in particular that this result does not require any compactness as-
sumption on C nor does it require special geometric conditions on the un-
derlying Banach space.
For more accurate studies we refer to [7] where the current state of knowl-
edge concerning such mappings and related topics are presented.
The term “rotative” originates from the fact that all rotations in the
Euclidean plane satisfy this condition. Any periodic mapping T with period
n (i.e. such that Tn = I) is (0, n)-rotative, all contractions are rotative for
all n ≥ 2.
We have difficulty in indicating nontrivial examples of rotative mappings.
It shows the problem, which has been opened for many years: it is not known
whether there exists a (0, 2)-rotative lipschitzian self-mapping (involution)
on a closed convex subset of a Banach space which is fixed point free (see
[2], p. 180).
Under such circumstances we illustrate the phenomenon of rotativeness
with the following examples.

Example 1. Let C[0, 1] be the space of continuous real valued functions
on [0, 1] with the standard supremum norm. Set

K = {x ∈ C[0, 1] : 0 = x(0) ≤ x(t) ≤ x(1) = 1} .

A mapping T : K → K defined by Tx(t) = tx(t), x ∈ K, t ∈ [0, 1] is
nonexpansive (even contractive, i.e. ‖Tx − Ty‖ < ‖x − y‖ if x 6= y) and
fixed point free. This mapping is not rotative, which can be concluded from
Theorem 1.

Example 2. Let K be defined as in Example 1 and let K1 be the set of all
functions x ∈ K which are nondecreasing. For n ∈ N, n ≥ 2 and x ∈ K1 let

Tx(t) =

{
x

(
n−1

n + t
)
− x

(
n−1

n

)
if t ∈ [0, 1

n ],
x

(
t− 1

n

)
+

[
1− x

(
n−1

n

)]
if t ∈ [ 1

n , 1].

It is easy to see that T : K1 → K1 is nonexpansive, n-rotative (because,
Tnx(t) = x(t)) and x(t) = t, t ∈ [0, 1], is a fixed point of T .

The rotativeness condition (2) is actually independent of nonexpansive-
ness of T (and, in fact, this condition may be satisfied by very irregular
mappings).
A mapping T : C → C is said to be k-lipschitzian if

‖Tx− Ty‖ ≤ k‖x− y‖ for all x, y ∈ C.
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We can also consider k-lipschitzian rotative mappings with k > 1. (In
this setting, rotativeness assures the existence of fixed points with k slightly
greater than 1, see [2], [5], [7].) Recall that even in a Hilbert space one
can construct a selfmapping of the unit ball which is fixed point free and
(1+ε)-lipschitzian with 0 < ε < 1 arbitrarily small (see [1], Example 1). Of
course this mapping is not rotative.

Example 3. Let K be defined as in Example 1. For k > 1 set

Tx(t) = k max
{

x(t)−
(

1− 1
k

)
, 0

}
.

It is easy to see that T : K → K is k-lipschitzian, (
∑n

j=1
1

kj−1 , n)-rotative
and fixed point free. Here, a > 1. For 2-rotative mappings, aside from some
observations recording a = 0, no examples are known in the case 0 < a ≤ 1.

The following lemma plays an important role in the paper.

Lemma 1 ([4]). Let C be a nonempty closed convex subset of a Banach
space E and let T : C → C be k-lipschitzian. Assume that A,B ∈ R and
0 ≤ A < 1 and 0 < B. If for an arbitrary x ∈ C there exists z ∈ C such
that

‖Tz − z‖ ≤ A‖Tx− x‖
and

‖z − x‖ ≤ B‖Tx− x‖,
then T has a fixed point in C.

The next simple lemma has technical character.

Lemma 2. If x ∈ R+ \ {1} and n ≥ 3, then

(3)
n−1∑
j=2

jxj−1 =
2x− nxn−1 − x2 + (n− 1)xn

(1− x)2
.

Proof. It is consequence of a simple calculation:

n−1∑
j=2

jxj−1 = 2x + 3x2 + · · ·+ (n− 1)xn−2

= [x2]′ + [x3]′ + · · ·+ [xn−1]′

=

n−1∑
j=2

xj

′ = [
x2 − xn

1− x

]′
and the right site of (3) is obvious. �
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2. Main result. Now, we give a new elementary and constructive proof
of Theorem 1. Our proof is based on finding a sequence which converges to
a fixed point of the investigated mapping. In this paper we use Halpern’s
idea of iterative procedure [6]. Halpern used his procedure to construct an
infinite sequence in a Hilbert space which converges to a fixed point of a
nonexpansive mapping. We use his idea in a different way and in Banach
spaces.

Proof of Theorem 1. Case n = 2. We consider

z =
1
2

(
T 2x0 + Tx0

)
,

where x0 is an arbitrary point in C, and the sequence {zp} generated by
z1 = z,

zp+1 =
1
2

(
T 2zp + Tzp

)
, p = 1, 2, . . . .

It is not difficult to see (using only the triangle inequality, (1) and (2)) that

‖z − Tz‖ ≤
(

1
2

+
a

4

)
‖x0 − Tx0‖(4)

and

‖z − x0‖ ≤
1
2
(a + 1)‖x0 − Tx0‖.(5)

Since 1
2 + a

4 < 1 for a < 2, by inequalities (4) and (5), Lemma 1 implies the
existence of fixed points of T in C and guarantees that the sequence {zp} is
strongly convergent to a fixed point of T .
Case n ≥ 3. We consider a sequence generated by the following iteration:

x0 = x ∈ C,

x1 = αTnx0 + (1− α)Tx0,

x2 = αTnx0 + (1− α)Tx1,

. . . . . . . . . . . . . . . . . . . . . . .

xn−1 = αTnx0 + (1− α)Txn−2,

where α ∈ (0, 1). Put z = xn−1, then

‖z − Tz‖ = ‖αTnx0 + (1− α)Txn−2 − Tz‖
≤ α‖Tn−1x0 − z‖+ (1− α)‖xn−2 − z‖
= α‖Tn−1x0 − αTnx0 − (1− α)Txn−2‖(6)

+ (1− α)‖αTnx0 + (1− α)Txn−3 − αTnx0 − (1− α)Txn−2‖
≤ α2‖x0 − Tx0‖+ α(1− α)‖Tn−2x0 − xn−2‖

+ (1− α)2‖xn−3 − xn−2‖.
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An estimation for α(1− α)‖Tn−2x0 − xn−2‖ is the following

α(1− α)‖Tn−2x0 − xn−2‖ =

= α(1− α)‖Tn−2x0 − αTnx0 − (1− α)Txn−3‖
= α(1− α)‖α(Tn−2x0 − Tnx0) + (1− α)(Tn−2x0 − Txn−3)‖
≤ α2(1− α)‖x0 − T 2x0‖+ α(1− α)2‖Tn−3x0 − xn−3‖
= α2(1− α)‖x0 − T 2x0‖

+ α(1− α)2‖Tn−3x0 − αTnx0 − (1− α)Txn−4‖
= α2(1− α)‖x0 − T 2x0‖

+ α(1− α)2‖α(Tn−3x0 − Tnx0) + (1− α)(Tn−3x0 − Txn−4‖
≤ α2(1− α)‖x0 − T 2x0‖+ α2(1− α)2‖x0 − T 3x0‖(7)

+ α(1− α)3‖Tn−4x0 − xn−4‖ ≤ · · ·
≤ α2(1− α)‖x0 − T 2x0‖+ α2(1− α)2‖x0 − T 3x0‖

+ α2(1− α)3‖x0 − T 4x0‖+ · · ·
+ α2(1− α)n−2‖x0 − Tn−1x0‖

(using only the triangle inequality and (1))

≤

α2
n−1∑
j=2

j(1− α)j−1

 ‖x0 − Tx0‖.

The evaluation for the next expression in (6) is the following

(1− α)2‖xn−3 − xn−2‖ ≤ (1− α)3‖xn−4 − xn−3‖ ≤ · · ·
≤ (1− α)n−1‖x1 − x0‖
= (1− α)n−1‖α(Tnx0 − x0) + (1− α)(Tx0 − x0)‖(8)

≤ [α(1− α)n−1a + (1− α)n]‖x0 − Tx0‖.

Combining (6) with (7) and (8) yields

(9)

‖z − Tz‖ ≤

{
α2 + α2

n−1∑
j=2

j(1− α)j−1

+ α(1− α)n−1a + (1− α)n

}
‖x0 − Tx0‖.
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Putting α = 1
n and applying Lemma 2, from (9) we obtain

‖z − Tz‖ ≤

{
1
n2

+
1
n2

n−1∑
j=2

j

(
n− 1

n

)j−1

+
1
n

(
n− 1

n

)n−1

a +
(

n− 1
n

)n
}
‖x0 − Tx0‖(10)

=

{
1 +

(a

n
− 1

) (
n− 1

n

)n−1
}
‖x0 − Tx0‖.

Moreover, we have

‖z − x0‖ = ‖α(Tnx0 − x0) + (1− α)(Txn−2 − x0)‖
≤ αa‖x0 − Tx0‖+ (1− α)‖Txn−2 − x0‖
≤ αa‖x0 − Tx0‖+ (1− α)[‖Txn−2 − Tnx0‖+ ‖Tnx0 − x0‖]
≤ a‖x0 − Tx0‖+ (1− α)‖xn−2 − Tn−1x0‖
= a‖x0 − Tx0‖

+ (1− α)‖α(Tnx0 − Tn−1x0) + (1− α)(Txn−3 − Tn−1x0)‖
≤ a‖x0 − Tx0‖+ α(1− α)‖x0 − Tx0‖

+ (1− α)2‖xn−3 − Tn−2x0‖
≤ a‖x0 − Tx0‖+ α(1− α)‖x0 − Tx0‖(11)

+ α(1− α)2‖x0 − T 2x0‖+ α(1− α)3‖x0 − T 3x0‖+ · · ·
+ α(1− α)n−2‖x0 − Tn−2x0‖+ (1− α)n−1‖x0 − Tx0‖

(using only the triangle inequality and (1))

≤
{
a + α(1− α) + 2α(1− α)2 + · · ·
+(n− 2)α(1− α)n−2 + (1− α)n−1

}
‖x0 − Tx0‖

≤ {n + 1 + 2 + · · ·+ (n− 2) + 1} ‖x0 − Tx0‖

=
1
2
(n2 + n + 2)‖x0 − Tx0‖.

Since

1 +
(a

n
− 1

) (
n− 1

n

)n−1

< 1 for a < n,

by inequalities (10) and (11), Lemma 1 implies the existence of fixed points
of T in C. �

Remark 1. From the above proof it follows that the sequence {zp} gener-
ated by the following iteration process:

z1(x) = xn−1(x), z2(x) = xn−1

(
z1(x)

)
, . . . , zp+1(x) = xn−1

(
zp(x)

)
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for p = 1, 2, 3, . . . , converges strongly to a fixed point of T .
Moreover, the mapping R : C → C defined by

R(x) = lim
p→∞

zp(x)(12)

is a nonexpansive retraction of C onto the fixed point set of T .

(Recall, a continuous mapping r : C → F is called a retraction if r(x) = x
for all x ∈ F .)

Proof. Note that a mapping Tα : C → C defined by

Tαx0 = (1− α)Txn−2 + αTnx0, x0 ∈ C, 0 < α < 1,

is nonexpansive. Indeed, for any x0, y0 ∈ C by nonexpansiveness of T , we
have

‖Tαx0 − Tαy0‖ = ‖(1− α)Txn−2 + αTnx0 − (1− α)Tyn−2 − αTny0‖
≤ (1− α)‖Txn−2 − Tyn−2‖+ α‖Tnx0 − Tny0‖
≤ (1− α)‖xn−2 − yn−2‖+ α‖x0 − y0‖
= (1− α)‖(1−α)Txn−3 + αTnx0 − (1−α)Tyn−3 − αTny0‖

+ α‖x0 − y0‖
≤ (1− α)

[
(1− α)‖xn−3−yn−3‖+ α‖x0−y0‖

]
+ α‖x0−y0‖

≤ (1− α)2‖xn−3 − yn−3‖+
[
(1− α)α + α

]
‖x0 − y0‖ ≤ · · ·

≤ (1− α)n−1‖x0 − y0‖
+

[
(1− α)n−2+(1− α)n−3+· · ·+(1− α)+1

]
α‖x0 − y0‖

=
{

(1− α)n−1 +
1
α

[
1− (1− α)n−1

]
α

}
‖x0 − y0‖

= ‖x0 − y0‖.
Routine calculation shows that a fixed point of T is a fixed point of Tα.
Now, we can consider two sequences

x0 −→ z1 −→ z2 −→ . . . −→ z

y0 −→ z∗1 −→ z∗2 −→ . . . −→ z∗

generated for x0, y0 ∈ C by zk+1 = Tαzk, z∗k+1 = Tαz∗k, k = 1, 2, . . . . Since
Tα is nonexpansive,

‖zk+1 − z∗k+1‖ = ‖Tαzk − Tαz∗k‖ ≤ ‖zk − z∗k‖,
and the sequence {‖zk − z∗k‖}, as weakly decreasing and bounded, is con-
vergent. Let

lim
k→∞

‖zk − z∗k‖ = ‖z − z∗‖.

Because the norm is continuous and

‖z − z∗‖ ≤ ‖x0 − y0‖
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we have
‖Rx0 −Ry0‖ = ‖z − z∗‖ ≤ ‖x0 − y0‖,

and the proof is complete. �

Remark 2. Note, that the above iteration procedure and its modification
are applicable to the proofs of the existence of fixed points of k-lipschitzian
n-rotative mappings with n ≥ 3 (see [5]). The results obtained in [5] are
better than these which are known until nowadays.
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