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Local Ramsey numbers for linear forests

ABSTRACT. Let L be a disjoint union of nontrivial paths. Such a graph we
call a linear forest. We study the relation between the 2-local Ramsey number
Rs.10c(L) and the Ramsey number R(L), where L is a linear forest.

L will be called an (n, j)-linear forest if L has n vertices and j maximal
paths having an odd number of vertices. If L is an (n, j)-linear forest, then
Roioc(L) = (3n —j)/2+[7/2] — 1.

Introduction. Let G, H be simple graphs with at least two vertices. The
Ramsey number R(G, H) is the smallest integer n such that in arbitrary
two-colouring (say red and blue) of edges of the complete graph K,, a red
copy of G or a blue copy of H is contained (as subgraphs). If G and H are
isomorphic we write R(G) instead of R(G,G). For a graph G and positive
integer n by nG we denote the graph consisting of n disjoint copies of G.
Moreover, K, denotes a star with n edges, and P, denotes a path with n
vertices.

A local k-colouring of a graph F' is a colouring of the edges of F' in such
a way that the edges incident to each vertex of I’ are coloured with at most
k different colours. The k-local Ramsey number Ry i,.(G) of a graph G is
defined as the smallest integer n such that K, contains a monochromatic
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subgraph G for every local k-colouring of K,,. The existence of Ry joc(G) is
proved by Gyérfas, Lehel, Schelp and Tuza in [8]. Most of the results for
local k-colourings can be found in [1], [2], [5], [8], [9], [11]-[14].

Let L be a disjoint union of nontrivial paths. Such a graph we call a
linear forest. L will be called a (n, j)-linear forest if L has n vertices and j
maximal paths having an odd number of vertices.

We study the relation between the 2-local Ramsey number Ry j,.(L) and
the Ramsey number R(L), where L is an (n, j)-linear forest.

If K, is locally 2-coloured and m, m > 2, is the number of colours, we
can define a partition P(K,,) into nonempty sets on the vertices of K, as
follows. Let A;; denote the set of vertices in K, incident to edges of colour
i and colour j, where ¢ # j (we mean that A;; = Aj;). The vertices incident
to edges of only one colour, say i, can be distributed arbitrarily in the sets
A, where 1 < j < 'm, j # i. So every partition set A;; induces a 2-coloured
complete subgraph in K.

The following result is a key tool in studying of the 2-local Ramsey num-
ber of graphs.

Proposition 1 (Gyéarfds, et al. [8]). Let K, be locally 2-coloured with
colours 1,2,...,m, where m > 2. Then either m = 3 and

P(Ky) = {412, A13, Aos}
or there exists a colour, say 1, such that
P(K,) ={Ai2, A13,..., Aim}.
The following interesting results are useful here.

Proposition 2 (Gyérfas, et al. [8]). Let P, denote the path on n vertices.
Then

Rojoc(Por) = 3k — 1 if k > 1,
Rojoc(Pog+1) =3k + 1 if kb > 1.
For disconnected acyclic graphs G the following results are known.

Proposition 3. (Gyérfas, et al. [8]) Rojoc(nKs2) = 3n — 1;
(Cockayne, et al. [6]) R(nK3) =3n—1 ifn > 2.

Moreover, if a > b > 1 then
(Grossman [7]) R(K1,,U K;p) = max{a +2b,2a+1,a+ b+ 3};
(Blelak [2]) R2—loc(K1,a @) Kl,b) =2a+b+ 2.

For unions of cycles the following relations between the Ramsey and the
2-local Ramsey numbers are known.

Theorem 4. (Burr et al. [3]) R(nC3) =5n, n > 2;
(Gyérfas et al. [8]) Rajoc(nC3) =Tn—2, n > 2.
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Theorem 5 (Bielak [2]). Ry oc(nCy) =6n —1= R(nCy) forn > 2;
Rojoc(nCoi1) =n(dk +3) — 2 > R(nCoryq) for k> 2 orn > 2;
Rooc(E(C3UCy)) = 15k — 2 > R(k(C3 U Cy)) for k > 1.

Mizuno and Sato [10] proved that R(k(Cs U Cy4)) = 11k — 1.

There is a question for which disconnected graphs the 2-local Ramsey
number Ra o.(G) is equal to the Ramsey number R(G). In this paper we
study this problem for linear forests.

Investigation of linear forests. Let the complement of a graph G be
denoted by G. Burr and Roberts proved the following lemma and theorem.

Lemma 6 (Burr, et al. [4]). Let m > 2k —2 > 0 and let G be a graph
of order m + k containing a path P, = uy...u, of order m but no path
of order m + 1. Then G contains two disjoint paths, each of the form
vWuMy@ |y where each u® is a uj in Py with 2 < j <2k -3,
each of vV is a vertex not in Py,, and the two paths have a total of 2k — 2
vertices.

Theorem 7 (Burr, et al. [4]). If L is an (n,j)-linear forest, then R(L) =
(B3n—j)/2—1.

The Ramsey number for an (n, j)-linear forest depends on the number
of vertices n and the number of odd components j. A natural question is:
what is the 2-local Ramsey number for an (n, j)-linear forest? The answer
to this question is the principal result of this paper and is presented in the
following theorem.

Theorem 8. If L is an (n, j)-linear forest, then Ra (L) = (3n —j)/2 +
[3/2] = 1.

Proof. Let t = (3n — j)/2 + [j/2] — 1. First let us consider the colour-
partition P(Kt_l) = {Alg, Az, A23} such that |A12| = (n—j)/2+ []/21 —-1=
|A13|, ‘AQ:}‘ = (n - ])/2 + L]/2J Note that ‘Am U A13| < |A12 @] Agg‘ =
|A13 U A2g| < n. So, there exists no monochromatic L in this local 2-
colouring of Ky 1.

Thus Ry.jo.(L) > t. We should prove that Rg (L) < t. Let us consider
a local 2-colouring of the edges of K; with m colours. We can assume that
m > 2, else there exists monochromatic L in this local 2-colouring of K.

Let Pas and P, be any paths of L. Let L’ be formed from L by replacing
these two paths with a path Pasi4. Note that L is a subgraph of L’ and the
parameter j is the same for L and L. So Ry joc(L') > Rojoc(L), and the
inequality to be proved remains the same.

Therefore, it suffices to consider only the cases in which L consists of a
single path of even order or in which L contains only paths of odd order.

The first case is covered by Proposition 2. Let us consider the second
case. The inequality Ro.,.(L) <t can be proved by induction on j. Again,
the case j =1 is covered by Proposition 2.
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Assume the result to be true for any linear forest with j — 1 paths of odd
order, j > 2. Let L consist of j paths of odd order and have n vertices and
let P, be a shortest path in L.

Note that

(1) 1< [n/j] <[n/2].

Case 1. P(K;) = {A12, A13, Aa3}. Without loss of generality we assume
that |A12| Z |A13| Z 1 and ‘Am’ 2 |A23| Z 1. Then |A12| Z (n—])/Z—I—D/ﬂ
Evidently if [A13] > (n—j)/2+j/2] then we can easily find L in the colour 1
in the subgraph (A;2UA13). Solet |A13| < (n—73)/24|j/2] —1. Similarly we
can assume that |Agz| < (n—7)/2+|j/2| —1. Note that |A;3UAgs| < n—2.

Suppose that [A;3|, |Aa23] > (I—1)/2. Since |Aj2| > (I—1)/2+1, we define
X asa (3(I—1)/2+ 1)-element subset consisting of (I —1)/2 vertices of A3
and of Ass, and (I — 1)/2 + 1 vertices of Ajo. Evidently (X) contains P, of
colour 1 and of colour 2 in the colouring. Note that |A13UA3—X| < n—I—1.
Hence Ky — X does not contain L — P, of colour 3 in the colouring. Since
t—|X|=0Bn—-1)—(G—1))/2+ [j/2] — 1, by inductive hypothesis there
exists a linear forest L — P, in colour 1 or 2 in the colouring. Thus we get
the result.

Assume that without loss of generality |As3| = a < (I—1)/2—1. Suppose
that |Ajz] = b > (I — 1)/2 and define X as follows: | X N A3| = (I —
1)/2, | XNAi2| =l—a, | XNAzs| = a. Moreover, let (X) contain all vertices
of a P_g, in colour 2 from < Ajo > (if it exists). Thus (X) contains P,
in colour 1 and in colour 2 (if it is available). Since |43 U Az — X| <
n—3)/2+5/2] —1+a—(1—-1)/2—a < |n/2], K — X does not contain
L — P, of colour 3 in the colouring. Thus, by inductive hypothesis, L — P, is
of colour 1 or of colour 2 in the colouring of K; — X and we get the result
as above.

Therefore, we can assume that |43 =b < (I—1)/2—1 and b > a. Then
|A13U Agg| < 1—3 and (A13U As3) does not contain any L — L; in the colour
3. Moreover,

(2) |A12] > [3n/2] =1 —(a+b) = |3(n—2(a+b)/3)/2] — 1.

Hence, in view of Theorem 7, there exists a monochromatic path P =

P _12(atb)/31 in (A12).
Let S = Aj2 — V(P) and |S| = s. Note that

s > max{[(n — [2(a +b)/3]/2] — 1,b}
and
[[2(a+b)/3]/2] < b.

Therefore, if P is in colour 1 then it can be extended to P, of the same
colour by using vertices of Ai3 and vertices of S.
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Let us assume that P is in colour 2. We can assume that [2(a + b)/3] >
2a + 1, in the opposite case P can be extended to P, of colour 2 by using
vertices of Az and vertices of S.

Then a < [b/2] —1 and a+b < 3(l —2)/4. Let P, = ujua...um be a
longest path of colour 2 in (Aj3).

Set k = (I —1)/2. Evidently by (1)

m>n—[2a+b)/3]>2-[(1-2)/2]>1+2>1-3=2k—2.

Set S" = A1y — V(P,,). We can assume that m < n — 2a — 1, else since
|A12 — (n — 2a)| > a we can find P, in colour 2.
Then, by (1) and (2), we get

1S'| > [3n/2) =1 —(a+b) — (n —2a — 1)
=[n/2]+a—b>|n/2] —(1—-1)/2+2
> (141)/2+2> k.

Suppose for a while that & > 2. Let us consider a subgraph G of (A4;2)
containing all vertices of the path P,, and k vertices of S’. Since P, is
in colour 2, in view of Lemma 6 there are two disjoint paths in colour 1
having a total 2k — 2 vertices, each path beginning and ending outside the
set V(P,,) and not using the vertices ui, u;_3,u;—2, ..., Up. By maximality
of m we have that the edges between u; and end vertices of these paths are
in colour 1. Therefore we get a path of order 2k — 1 in colour 1 covering k
vertices u;, where i < 2k — 3 = [ — 4. Using a vertex of A3 and the vertex
U;_3 = ugp_o we can easily extend this path to a path P’ of order 2k +1 =1
in colour 1.

Let

2k—3

X=vV(P)u |J {u}.
i=1

Suppose that & = 1. Then let X = V(P3) U {v}, where Ps is a path in
(A12) of the colour 2 and v € Ays.

Note that in the both cases, (X) contains paths of order [ in colour 1 and
2. Since | X| =Bl —1)/2and t — | X|=B(n—-1)—(j —1))/2+ [j/2] -1,
by inductive hypothesis we get L — P, of colour 1 or 2 in the graph K; — X
in the colouring. The result is proved.

Case 2. P(K;) = {A12,A13,..., Ain}. Without loss of generality we
can assume that |Aja| > A3 > -+ > |Ayy|. Let M = max{q: P, € L}.
If |[A12] < M then we can change each colour i, for 3 <i < m, to colour 2.
Since there exists no Py in colour 2 then in view of Theorem 7 we get L in
colour 1. Therefore we can assume that |Aj2] > M. Similarly without loss
of generality we can assume that |Ay;| > 1, i =2,...,m. Moreover, m > 3,
else we have a global 2-colouring and this case is covered by Theorem 7.



6 H. Bielak

If |A13] > [n/2], then we have a P, of colour 1 in the subgraph (A12UA;3).
So L of this colour can be easily created as well.

Thus let |A13| < [n/2] —1. Sincen—1>n—|n/j| >n—|n/2] > [n/2],
the subgraph (Aj;) does not contain L— P, in colour i for ¢ > 3. Let us define
X asa (I+ (I —1)/2)-element subset of V(K}) containing (I —1)/2 vertices
from Aq3 and [ vertices of a P, in colour 2 if it exists (else take [ vertices from
Ay arbitrarily). The graph K;—X consists of (3(n—1)—(j—1))/2+][j/2]—1
vertices so by inductive hypothesis it contains L — P; of colour 1 or of colour
2 in the colouring. Since (X) contains P, in colour 1 and in colour 2 (if it is
available), we get the result. O

Immediately by Theorems 7, 8 we get the following result.

Corollary 9. If L is an (n, j)-linear forest, then
Ro10c(L) = R(L), for j =0

and
R2-loc(L) > R(L)v fOT’j > 0.

Final remark. The respective general methods for the study of the local
k-colouring for k > 2 have not been discovered.
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