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Local Ramsey numbers for linear forests

Abstract. Let L be a disjoint union of nontrivial paths. Such a graph we
call a linear forest. We study the relation between the 2-local Ramsey number
R2-loc(L) and the Ramsey number R(L), where L is a linear forest.

L will be called an (n, j)-linear forest if L has n vertices and j maximal
paths having an odd number of vertices. If L is an (n, j)-linear forest, then
R2-loc(L) = (3n − j)/2 + dj/2e − 1.

Introduction. Let G, H be simple graphs with at least two vertices. The
Ramsey number R(G, H) is the smallest integer n such that in arbitrary
two-colouring (say red and blue) of edges of the complete graph Kn a red
copy of G or a blue copy of H is contained (as subgraphs). If G and H are
isomorphic we write R(G) instead of R(G, G). For a graph G and positive
integer n by nG we denote the graph consisting of n disjoint copies of G.
Moreover, K1,n denotes a star with n edges, and Pn denotes a path with n
vertices.
A local k-colouring of a graph F is a colouring of the edges of F in such
a way that the edges incident to each vertex of F are coloured with at most
k different colours. The k-local Ramsey number Rk-loc(G) of a graph G is
defined as the smallest integer n such that Kn contains a monochromatic
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subgraph G for every local k-colouring of Kn. The existence of Rk-loc(G) is
proved by Gyárfás, Lehel, Schelp and Tuza in [8]. Most of the results for
local k-colourings can be found in [1], [2], [5], [8], [9], [11]–[14].
Let L be a disjoint union of nontrivial paths. Such a graph we call a
linear forest. L will be called a (n, j)-linear forest if L has n vertices and j
maximal paths having an odd number of vertices.
We study the relation between the 2-local Ramsey number R2-loc(L) and
the Ramsey number R(L), where L is an (n, j)-linear forest.
If Kn is locally 2-coloured and m, m ≥ 2, is the number of colours, we
can define a partition P(Kn) into nonempty sets on the vertices of Kn as
follows. Let Aij denote the set of vertices in Kn incident to edges of colour
i and colour j, where i 6= j (we mean that Aij = Aji). The vertices incident
to edges of only one colour, say i, can be distributed arbitrarily in the sets
Aij , where 1 ≤ j ≤ m, j 6= i. So every partition set Aij induces a 2-coloured
complete subgraph in Kn.
The following result is a key tool in studying of the 2-local Ramsey num-
ber of graphs.

Proposition 1 (Gyárfás, et al. [8]). Let Kn be locally 2-coloured with
colours 1, 2, . . . ,m, where m ≥ 2. Then either m = 3 and

P(Kn) = {A12, A13, A23}

or there exists a colour, say 1, such that

P(Kn) = {A12, A13, . . . , A1m}.

The following interesting results are useful here.

Proposition 2 (Gyárfás, et al. [8]). Let Pn denote the path on n vertices.
Then

R2-loc(P2k) = 3k − 1 if k ≥ 1,

R2-loc(P2k+1) = 3k + 1 if k ≥ 1.

For disconnected acyclic graphs G the following results are known.

Proposition 3. (Gyárfás, et al. [8]) R2-loc(nK2) = 3n − 1;
(Cockayne, et al. [6]) R(nK2) = 3n − 1 if n ≥ 2.
Moreover, if a ≥ b ≥ 1 then
(Grossman [7]) R(K1,a ∪ K1,b) = max{a + 2b, 2a + 1, a + b + 3};
(Bielak [2]) R2-loc(K1,a ∪ K1,b) = 2a + b + 2.

For unions of cycles the following relations between the Ramsey and the
2-local Ramsey numbers are known.

Theorem 4. (Burr et al. [3]) R(nC3) = 5n, n ≥ 2;
(Gyárfás et al. [8]) R2-loc(nC3) = 7n − 2, n ≥ 2.
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Theorem 5 (Bielak [2]). R2-loc(nC4) = 6n − 1 = R(nC4) for n ≥ 2;
R2-loc(nC2k+1) = n(4k + 3) − 2 > R(nC2k+1) for k ≥ 2 or n ≥ 2;
R2-loc(k(C3 ∪ C4)) = 15k − 2 > R(k(C3 ∪ C4)) for k ≥ 1.

Mizuno and Sato [10] proved that R(k(C3 ∪ C4)) = 11k − 1.
There is a question for which disconnected graphs the 2-local Ramsey
number R2-loc(G) is equal to the Ramsey number R(G). In this paper we
study this problem for linear forests.

Investigation of linear forests. Let the complement of a graph G be
denoted by G. Burr and Roberts proved the following lemma and theorem.

Lemma 6 (Burr, et al. [4]). Let m ≥ 2k − 2 > 0 and let G be a graph
of order m + k containing a path Pm = u1 . . . um of order m but no path
of order m + 1. Then G contains two disjoint paths, each of the form
v(1)u(1)v(2) . . . u(s−1)v(s), where each u(i) is a uj in Pm with 2 ≤ j ≤ 2k− 3,
each of v(i) is a vertex not in Pm, and the two paths have a total of 2k − 2
vertices.

Theorem 7 (Burr, et al. [4]). If L is an (n, j)-linear forest, then R(L) =
(3n − j)/2 − 1.

The Ramsey number for an (n, j)-linear forest depends on the number
of vertices n and the number of odd components j. A natural question is:
what is the 2-local Ramsey number for an (n, j)-linear forest? The answer
to this question is the principal result of this paper and is presented in the
following theorem.

Theorem 8. If L is an (n, j)-linear forest, then R2-loc(L) = (3n − j)/2 +
dj/2e − 1.

Proof. Let t = (3n − j)/2 + dj/2e − 1. First let us consider the colour-
partition P(Kt−1) = {A12, A13, A23} such that |A12| = (n−j)/2+dj/2e−1 =
|A13|, |A23| = (n − j)/2 + bj/2c. Note that |A12 ∪ A13| ≤ |A12 ∪ A23| =
|A13 ∪ A23| < n. So, there exists no monochromatic L in this local 2-
colouring of Kt−1.
Thus R2-loc(L) ≥ t. We should prove that R2-loc(L) ≤ t. Let us consider
a local 2-colouring of the edges of Kt with m colours. We can assume that
m ≥ 2, else there exists monochromatic L in this local 2-colouring of Kt.
Let P2s and Pq be any paths of L. Let L′ be formed from L by replacing
these two paths with a path P2s+q. Note that L is a subgraph of L′ and the
parameter j is the same for L and L′. So R2-loc(L′) ≥ R2-loc(L), and the
inequality to be proved remains the same.
Therefore, it suffices to consider only the cases in which L consists of a
single path of even order or in which L contains only paths of odd order.
The first case is covered by Proposition 2. Let us consider the second
case. The inequality R2-loc(L) ≤ t can be proved by induction on j. Again,
the case j = 1 is covered by Proposition 2.
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Assume the result to be true for any linear forest with j − 1 paths of odd
order, j ≥ 2. Let L consist of j paths of odd order and have n vertices and
let Pl be a shortest path in L.
Note that

(1) l ≤ bn/jc ≤ bn/2c.

Case 1. P(Kt) = {A12, A13, A23}. Without loss of generality we assume
that |A12| ≥ |A13| ≥ 1 and |A12| ≥ |A23| ≥ 1. Then |A12| ≥ (n−j)/2+dj/2e.
Evidently if |A13| ≥ (n−j)/2+bj/2c then we can easily find L in the colour 1
in the subgraph 〈A12∪A13〉. So let |A13| ≤ (n−j)/2+bj/2c−1. Similarly we
can assume that |A23| ≤ (n−j)/2+bj/2c−1. Note that |A13∪A23| ≤ n−2.
Suppose that |A13|, |A23| ≥ (l−1)/2. Since |A12| ≥ (l−1)/2+1, we define

X as a (3(l− 1)/2+1)-element subset consisting of (l− 1)/2 vertices of A13

and of A23, and (l − 1)/2 + 1 vertices of A12. Evidently 〈X〉 contains Pl of
colour 1 and of colour 2 in the colouring. Note that |A13∪A23−X| ≤ n−l−1.
Hence Kt − X does not contain L − Pl of colour 3 in the colouring. Since
t − |X| = (3(n − l) − (j − 1))/2 + dj/2e − 1, by inductive hypothesis there
exists a linear forest L − Pl in colour 1 or 2 in the colouring. Thus we get
the result.
Assume that without loss of generality |A23| = a ≤ (l−1)/2−1. Suppose
that |A13| = b ≥ (l − 1)/2 and define X as follows: |X ∩ A13| = (l −
1)/2, |X∩A12| = l−a, |X∩A23| = a. Moreover, let 〈X〉 contain all vertices
of a Pl−2a in colour 2 from < A12 > (if it exists). Thus 〈X〉 contains Pl

in colour 1 and in colour 2 (if it is available). Since |A13 ∪ A23 − X| ≤
(n− j)/2 + bj/2c − 1 + a− (l− 1)/2− a < bn/2c, Kt −X does not contain
L−Pl of colour 3 in the colouring. Thus, by inductive hypothesis, L−Pl is
of colour 1 or of colour 2 in the colouring of Kt − X and we get the result
as above.
Therefore, we can assume that |A13| = b ≤ (l− 1)/2− 1 and b ≥ a. Then

|A13∪A23| ≤ l−3 and 〈A13∪A23〉 does not contain any L−Ll in the colour
3. Moreover,

(2) |A12| ≥ b3n/2c − 1 − (a + b) = b3(n − 2(a + b)/3)/2c − 1.

Hence, in view of Theorem 7, there exists a monochromatic path P =
Pn−d2(a+b)/3e in 〈A12〉.
Let S = A12 − V (P ) and |S| = s. Note that

s ≥ max{b(n − d2(a + b)/3e/2c − 1, b}

and

dd2(a + b)/3e/2e ≤ b.

Therefore, if P is in colour 1 then it can be extended to Pn of the same
colour by using vertices of A13 and vertices of S.



Local Ramsey numbers for linear forests 5

Let us assume that P is in colour 2. We can assume that d2(a + b)/3e ≥
2a + 1, in the opposite case P can be extended to Pn of colour 2 by using
vertices of A23 and vertices of S.
Then a ≤ db/2e − 1 and a + b < 3(l − 2)/4. Let Pm = u1u2 . . . um be a
longest path of colour 2 in 〈A12〉.
Set k = (l − 1)/2. Evidently by (1)

m ≥ n − d2(a + b)/3e ≥ 2l − d(l − 2)/2e ≥ l + 2 > l − 3 = 2k − 2.

Set S′ = A12 − V (Pm). We can assume that m ≤ n − 2a − 1, else since
|A12 − (n − 2a)| ≥ a we can find Pn in colour 2.
Then, by (1) and (2), we get

|S′| ≥ b3n/2c − 1 − (a + b) − (n − 2a − 1)

= bn/2c + a − b ≥ bn/2c − (l − 1)/2 + 2

≥ (l + 1)/2 + 2 > k.

Suppose for a while that k ≥ 2. Let us consider a subgraph G of 〈A12〉
containing all vertices of the path Pm and k vertices of S′. Since Pm is
in colour 2, in view of Lemma 6 there are two disjoint paths in colour 1
having a total 2k − 2 vertices, each path beginning and ending outside the
set V (Pm) and not using the vertices u1, ul−3, ul−2, . . . , um. By maximality
of m we have that the edges between u1 and end vertices of these paths are
in colour 1. Therefore we get a path of order 2k − 1 in colour 1 covering k
vertices ui, where i ≤ 2k − 3 = l − 4. Using a vertex of A13 and the vertex
ul−3 = u2k−2 we can easily extend this path to a path P ′ of order 2k +1 = l
in colour 1.
Let

X = V (P ′) ∪
2k−3⋃
i=1

{ui}.

Suppose that k = 1. Then let X = V (P3) ∪ {v}, where P3 is a path in
〈A12〉 of the colour 2 and v ∈ A13.
Note that in the both cases, 〈X〉 contains paths of order l in colour 1 and
2. Since |X| = (3l − 1)/2 and t − |X| = (3(n − l) − (j − 1))/2 + dj/2e − 1,
by inductive hypothesis we get L− Pl of colour 1 or 2 in the graph Kt −X
in the colouring. The result is proved.
Case 2. P(Kt) = {A12, A13, . . . , A1m}. Without loss of generality we
can assume that |A12| ≥ |A13| ≥ · · · ≥ |A1m|. Let M = max{q : Pq ∈ L}.
If |A12| < M then we can change each colour i, for 3 ≤ i ≤ m, to colour 2.
Since there exists no PM in colour 2 then in view of Theorem 7 we get L in
colour 1. Therefore we can assume that |A12| ≥ M . Similarly without loss
of generality we can assume that |A1i| ≥ l, i = 2, . . . ,m. Moreover, m ≥ 3,
else we have a global 2-colouring and this case is covered by Theorem 7.
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If |A13| ≥ dn/2e, then we have a Pn of colour 1 in the subgraph 〈A12∪A13〉.
So L of this colour can be easily created as well.
Thus let |A13| ≤ dn/2e−1. Since n− l ≥ n−bn/jc ≥ n−bn/2c ≥ dn/2e,
the subgraph 〈A1i〉 does not contain L−Pl in colour i for i ≥ 3. Let us define
X as a (l + (l− 1)/2)-element subset of V (Kt) containing (l− 1)/2 vertices
from A13 and l vertices of a Pl in colour 2 if it exists (else take l vertices from
A12 arbitrarily). The graphKt−X consists of (3(n−l)−(j−1))/2+dj/2e−1
vertices so by inductive hypothesis it contains L−Pl of colour 1 or of colour
2 in the colouring. Since 〈X〉 contains Pl in colour 1 and in colour 2 (if it is
available), we get the result. �

Immediately by Theorems 7, 8 we get the following result.

Corollary 9. If L is an (n, j)-linear forest, then

R2-loc(L) = R(L), for j = 0

and
R2-loc(L) > R(L), for j > 0.

Final remark. The respective general methods for the study of the local
k-colouring for k > 2 have not been discovered.
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[9] Gyárfás, A., J. Lehel, Local k-colorings of graphs and hypergraphs, J. Combin. Theory,
Ser. B 43 (1987), 127–139.

[10] Mizuno, H., I. Sato, Ramsey numbers for unions of some cycles, Discrete Math. 69
(1988), 283–294.

[11] Ruciński, A. , M. Truszczyński, A note on local colorings of graphs, Discrete Math.
164 (1997), 251–255.

[12] Truszczyński, M., Zs. Tuza, Linear upper bounds for local Ramsey numbers, Graphs
Combin. 3 (1987), 67–73.

[13] Truszczyński, M., Generalized local colorings of graphs, J. Combin. Theory Ser. B 54
(1992), 178–188.



Local Ramsey numbers for linear forests 7

[14] Schelp, R. H., Local and mean k-Ramsey numbers for complete graphs, J. Graph
Theory 24 (1997), 201–203.

Halina Bielak
Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: hbiel@golem.umcs.lublin.pl

Received September 16, 2005


