ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LIX, 2005

SECTIO A

1 - 7

HALINA BIELAK

Local Ramsey numbers for linear forests

ABSTRACT. Let L be a disjoint union of nontrivial paths. Such a graph we call a linear forest. We study the relation between the 2-local Ramsey number $R_{2-loc}(L)$ and the Ramsey number R(L), where L is a linear forest.

L will be called an (n, j)-linear forest if *L* has *n* vertices and *j* maximal paths having an odd number of vertices. If *L* is an (n, j)-linear forest, then $R_{2-loc}(L) = (3n - j)/2 + \lfloor j/2 \rfloor - 1$.

Introduction. Let G, H be simple graphs with at least two vertices. The Ramsey number R(G, H) is the smallest integer n such that in arbitrary two-colouring (say red and blue) of edges of the complete graph K_n a red copy of G or a blue copy of H is contained (as subgraphs). If G and H are isomorphic we write R(G) instead of R(G, G). For a graph G and positive integer n by nG we denote the graph consisting of n disjoint copies of G. Moreover, $K_{1,n}$ denotes a star with n edges, and P_n denotes a path with n vertices.

A local k-colouring of a graph F is a colouring of the edges of F in such a way that the edges incident to each vertex of F are coloured with at most k different colours. The k-local Ramsey number $R_{k-loc}(G)$ of a graph G is defined as the smallest integer n such that K_n contains a monochromatic

²⁰⁰⁰ Mathematics Subject Classification. 05C55.

 $Key\ words\ and\ phrases.$ Linear forest, local colouring, local Ramsey number, Ramsey number.

subgraph G for every local k-colouring of K_n . The existence of $R_{k-loc}(G)$ is proved by Gyárfás, Lehel, Schelp and Tuza in [8]. Most of the results for local k-colourings can be found in [1], [2], [5], [8], [9], [11]–[14].

Let L be a disjoint union of nontrivial paths. Such a graph we call a *linear forest*. L will be called a (n, j)-*linear forest* if L has n vertices and j maximal paths having an odd number of vertices.

We study the relation between the 2-local Ramsey number $R_{2-loc}(L)$ and the Ramsey number R(L), where L is an (n, j)-linear forest.

If K_n is locally 2-coloured and $m, m \ge 2$, is the number of colours, we can define a partition $\mathcal{P}(K_n)$ into nonempty sets on the vertices of K_n as follows. Let A_{ij} denote the set of vertices in K_n incident to edges of colour i and colour j, where $i \ne j$ (we mean that $A_{ij} = A_{ji}$). The vertices incident to edges of only one colour, say i, can be distributed arbitrarily in the sets A_{ij} , where $1 \le j \le m, j \ne i$. So every partition set A_{ij} induces a 2-coloured complete subgraph in K_n .

The following result is a key tool in studying of the 2-local Ramsey number of graphs.

Proposition 1 (Gyárfás, et al. [8]). Let K_n be locally 2-coloured with colours $1, 2, \ldots, m$, where $m \ge 2$. Then either m = 3 and

$$\mathcal{P}(K_n) = \{A_{12}, A_{13}, A_{23}\}$$

or there exists a colour, say 1, such that

$$\mathcal{P}(K_n) = \{A_{12}, A_{13}, \dots, A_{1m}\}.$$

The following interesting results are useful here.

Proposition 2 (Gyárfás, et al. [8]). Let P_n denote the path on n vertices. Then

$$R_{2-loc}(P_{2k}) = 3k - 1 \text{ if } k \ge 1,$$

$$R_{2-loc}(P_{2k+1}) = 3k + 1 \text{ if } k \ge 1.$$

For disconnected acyclic graphs G the following results are known.

Proposition 3. (Gyárfás, et al. [8]) $R_{2\text{-loc}}(nK_2) = 3n - 1$; (Cockayne, et al. [6]) $R(nK_2) = 3n - 1$ if $n \ge 2$. Moreover, if $a \ge b \ge 1$ then

(Grossman [7]) $R(K_{1,a} \cup K_{1,b}) = \max\{a + 2b, 2a + 1, a + b + 3\};$ (Bielak [2]) $R_{2-loc}(K_{1,a} \cup K_{1,b}) = 2a + b + 2.$

For unions of cycles the following relations between the Ramsey and the 2-local Ramsey numbers are known.

Theorem 4. (Burr et al. [3]) $R(nC_3) = 5n, n \ge 2$; (Gyárfás et al. [8]) $R_{2-loc}(nC_3) = 7n - 2, n \ge 2$. **Theorem 5** (Bielak [2]). $R_{2-loc}(nC_4) = 6n - 1 = R(nC_4)$ for $n \ge 2$; $R_{2-loc}(nC_{2k+1}) = n(4k+3) - 2 > R(nC_{2k+1})$ for $k \ge 2$ or $n \ge 2$; $R_{2-loc}(k(C_3 \cup C_4)) = 15k - 2 > R(k(C_3 \cup C_4))$ for $k \ge 1$.

Mizuno and Sato [10] proved that $R(k(C_3 \cup C_4)) = 11k - 1$.

There is a question for which disconnected graphs the 2-local Ramsey number $R_{2-loc}(G)$ is equal to the Ramsey number R(G). In this paper we study this problem for linear forests.

Investigation of linear forests. Let the complement of a graph G be denoted by \overline{G} . Burr and Roberts proved the following lemma and theorem.

Lemma 6 (Burr, et al. [4]). Let $m \ge 2k - 2 > 0$ and let G be a graph of order m + k containing a path $P_m = u_1 \dots u_m$ of order m but no path of order m + 1. Then \overline{G} contains two disjoint paths, each of the form $v^{(1)}u^{(1)}v^{(2)}\dots u^{(s-1)}v^{(s)}$, where each $u^{(i)}$ is a u_j in P_m with $2 \le j \le 2k - 3$, each of $v^{(i)}$ is a vertex not in P_m , and the two paths have a total of 2k - 2vertices.

Theorem 7 (Burr, et al. [4]). If L is an (n, j)-linear forest, then R(L) = (3n - j)/2 - 1.

The Ramsey number for an (n, j)-linear forest depends on the number of vertices n and the number of odd components j. A natural question is: what is the 2-local Ramsey number for an (n, j)-linear forest? The answer to this question is the principal result of this paper and is presented in the following theorem.

Theorem 8. If *L* is an (n, j)-linear forest, then $R_{2-loc}(L) = (3n - j)/2 + \lfloor j/2 \rfloor - 1$.

Proof. Let $t = (3n - j)/2 + \lceil j/2 \rceil - 1$. First let us consider the colourpartition $\mathcal{P}(K_{t-1}) = \{A_{12}, A_{13}, A_{23}\}$ such that $|A_{12}| = (n-j)/2 + \lceil j/2 \rceil - 1 = |A_{13}|, |A_{23}| = (n - j)/2 + \lfloor j/2 \rfloor$. Note that $|A_{12} \cup A_{13}| \le |A_{12} \cup A_{23}| = |A_{13} \cup A_{23}| < n$. So, there exists no monochromatic *L* in this local 2colouring of K_{t-1} .

Thus $R_{2-loc}(L) \ge t$. We should prove that $R_{2-loc}(L) \le t$. Let us consider a local 2-colouring of the edges of K_t with m colours. We can assume that $m \ge 2$, else there exists monochromatic L in this local 2-colouring of K_t .

Let P_{2s} and P_q be any paths of L. Let L' be formed from L by replacing these two paths with a path P_{2s+q} . Note that L is a subgraph of L' and the parameter j is the same for L and L'. So $R_{2-loc}(L') \geq R_{2-loc}(L)$, and the inequality to be proved remains the same.

Therefore, it suffices to consider only the cases in which L consists of a single path of even order or in which L contains only paths of odd order.

The first case is covered by Proposition 2. Let us consider the second case. The inequality $R_{2-loc}(L) \leq t$ can be proved by induction on j. Again, the case j = 1 is covered by Proposition 2.

Assume the result to be true for any linear forest with j-1 paths of odd order, $j \ge 2$. Let L consist of j paths of odd order and have n vertices and let P_l be a shortest path in L.

Note that

(1)
$$l \leq \lfloor n/j \rfloor \leq \lfloor n/2 \rfloor.$$

Case 1. $\mathcal{P}(K_t) = \{A_{12}, A_{13}, A_{23}\}$. Without loss of generality we assume that $|A_{12}| \ge |A_{13}| \ge 1$ and $|A_{12}| \ge |A_{23}| \ge 1$. Then $|A_{12}| \ge (n-j)/2 + \lceil j/2 \rceil$. Evidently if $|A_{13}| \ge (n-j)/2 + \lfloor j/2 \rfloor$ then we can easily find L in the colour 1 in the subgraph $\langle A_{12} \cup A_{13} \rangle$. So let $|A_{13}| \le (n-j)/2 + \lfloor j/2 \rfloor - 1$. Similarly we can assume that $|A_{23}| \le (n-j)/2 + \lfloor j/2 \rfloor - 1$. Note that $|A_{13} \cup A_{23}| \le n-2$.

Suppose that $|A_{13}|$, $|A_{23}| \ge (l-1)/2$. Since $|A_{12}| \ge (l-1)/2+1$, we define X as a (3(l-1)/2+1)-element subset consisting of (l-1)/2 vertices of A_{13} and of A_{23} , and (l-1)/2+1 vertices of A_{12} . Evidently $\langle X \rangle$ contains P_l of colour 1 and of colour 2 in the colouring. Note that $|A_{13} \cup A_{23} - X| \le n-l-1$. Hence $K_t - X$ does not contain $L - P_l$ of colour 3 in the colouring. Since $t - |X| = (3(n-l) - (j-1))/2 + \lceil j/2 \rceil - 1$, by inductive hypothesis there exists a linear forest $L - P_l$ in colour 1 or 2 in the colouring. Thus we get the result.

Assume that without loss of generality $|A_{23}| = a \leq (l-1)/2 - 1$. Suppose that $|A_{13}| = b \geq (l-1)/2$ and define X as follows: $|X \cap A_{13}| = (l-1)/2$, $|X \cap A_{12}| = l-a$, $|X \cap A_{23}| = a$. Moreover, let $\langle X \rangle$ contain all vertices of a P_{l-2a} in colour 2 from $\langle A_{12} \rangle$ (if it exists). Thus $\langle X \rangle$ contains P_l in colour 1 and in colour 2 (if it is available). Since $|A_{13} \cup A_{23} - X| \leq (n-j)/2 + \lfloor j/2 \rfloor - 1 + a - (l-1)/2 - a < \lfloor n/2 \rfloor$, $K_t - X$ does not contain $L - P_l$ of colour 3 in the colouring. Thus, by inductive hypothesis, $L - P_l$ is of colour 1 or of colour 2 in the colouring of $K_t - X$ and we get the result as above.

Therefore, we can assume that $|A_{13}| = b \leq (l-1)/2 - 1$ and $b \geq a$. Then $|A_{13} \cup A_{23}| \leq l-3$ and $\langle A_{13} \cup A_{23} \rangle$ does not contain any $L-L_l$ in the colour 3. Moreover,

(2)
$$|A_{12}| \ge \lfloor 3n/2 \rfloor - 1 - (a+b) = \lfloor 3(n-2(a+b)/3)/2 \rfloor - 1.$$

Hence, in view of Theorem 7, there exists a monochromatic path $P = P_{n-\lceil 2(a+b)/3 \rceil}$ in $\langle A_{12} \rangle$.

Let $S = A_{12} - V(P)$ and |S| = s. Note that

$$s \ge \max\{\lfloor (n - \lceil 2(a+b)/3 \rceil/2 \rfloor - 1, b\}$$

and

$$\lceil \lceil 2(a+b)/3 \rceil/2 \rceil \le b.$$

Therefore, if P is in colour 1 then it can be extended to P_n of the same colour by using vertices of A_{13} and vertices of S.

Let us assume that P is in colour 2. We can assume that $\lceil 2(a+b)/3 \rceil \ge 2a+1$, in the opposite case P can be extended to P_n of colour 2 by using vertices of A_{23} and vertices of S.

Then $a \leq \lfloor b/2 \rfloor - 1$ and a + b < 3(l-2)/4. Let $P_m = u_1 u_2 \dots u_m$ be a longest path of colour 2 in $\langle A_{12} \rangle$.

Set k = (l-1)/2. Evidently by (1)

$$m \ge n - \lceil 2(a+b)/3 \rceil \ge 2l - \lceil (l-2)/2 \rceil \ge l+2 > l-3 = 2k-2.$$

Set $S' = A_{12} - V(P_m)$. We can assume that $m \le n - 2a - 1$, else since $|A_{12} - (n - 2a)| \ge a$ we can find P_n in colour 2. Then, by (1) and (2), set at

Then, by (1) and (2), we get

$$|S'| \ge \lfloor 3n/2 \rfloor - 1 - (a+b) - (n-2a-1)$$

= $\lfloor n/2 \rfloor + a - b \ge \lfloor n/2 \rfloor - (l-1)/2 + 2$
 $\ge (l+1)/2 + 2 > k.$

Suppose for a while that $k \geq 2$. Let us consider a subgraph G of $\langle A_{12} \rangle$ containing all vertices of the path P_m and k vertices of S'. Since P_m is in colour 2, in view of Lemma 6 there are two disjoint paths in colour 1 having a total 2k - 2 vertices, each path beginning and ending outside the set $V(P_m)$ and not using the vertices $u_1, u_{l-3}, u_{l-2}, \ldots, u_m$. By maximality of m we have that the edges between u_1 and end vertices of these paths are in colour 1. Therefore we get a path of order 2k - 1 in colour 1 covering k vertices u_i , where $i \leq 2k - 3 = l - 4$. Using a vertex of A_{13} and the vertex $u_{l-3} = u_{2k-2}$ we can easily extend this path to a path P' of order 2k + 1 = l in colour 1.

Let

$$X = V(P') \cup \bigcup_{i=1}^{2k-3} \{u_i\}.$$

Suppose that k = 1. Then let $X = V(P_3) \cup \{v\}$, where P_3 is a path in $\langle A_{12} \rangle$ of the colour 2 and $v \in A_{13}$.

Note that in the both cases, $\langle X \rangle$ contains paths of order l in colour 1 and 2. Since |X| = (3l-1)/2 and $t - |X| = (3(n-l) - (j-1))/2 + \lceil j/2 \rceil - 1$, by inductive hypothesis we get $L - P_l$ of colour 1 or 2 in the graph $K_t - X$ in the colouring. The result is proved.

Case 2. $\mathcal{P}(K_t) = \{A_{12}, A_{13}, \ldots, A_{1m}\}$. Without loss of generality we can assume that $|A_{12}| \geq |A_{13}| \geq \cdots \geq |A_{1m}|$. Let $M = \max\{q : P_q \in L\}$. If $|A_{12}| < M$ then we can change each colour *i*, for $3 \leq i \leq m$, to colour 2. Since there exists no P_M in colour 2 then in view of Theorem 7 we get *L* in colour 1. Therefore we can assume that $|A_{12}| \geq M$. Similarly without loss of generality we can assume that $|A_{1i}| \geq l$, $i = 2, \ldots, m$. Moreover, $m \geq 3$, else we have a global 2-colouring and this case is covered by Theorem 7.

If $|A_{13}| \ge \lceil n/2 \rceil$, then we have a P_n of colour 1 in the subgraph $\langle A_{12} \cup A_{13} \rangle$. So L of this colour can be easily created as well.

Thus let $|A_{13}| \leq \lceil n/2 \rceil - 1$. Since $n-l \geq n - \lfloor n/j \rfloor \geq n - \lfloor n/2 \rfloor \geq \lceil n/2 \rceil$, the subgraph $\langle A_{1i} \rangle$ does not contain $L-P_l$ in colour *i* for $i \geq 3$. Let us define X as a (l + (l-1)/2)-element subset of $V(K_t)$ containing (l-1)/2 vertices from A_{13} and *l* vertices of a P_l in colour 2 if it exists (else take *l* vertices from A_{12} arbitrarily). The graph $K_t - X$ consists of $(3(n-l)-(j-1))/2 + \lceil j/2 \rceil - 1$ vertices so by inductive hypothesis it contains $L - P_l$ of colour 1 or of colour 2 in the colouring. Since $\langle X \rangle$ contains P_l in colour 1 and in colour 2 (if it is available), we get the result.

Immediately by Theorems 7, 8 we get the following result.

Corollary 9. If L is an (n, j)-linear forest, then

$$R_{2-loc}(L) = R(L), \text{ for } j = 0$$

and

$$R_{2-loc}(L) > R(L), \text{ for } j > 0.$$

Final remark. The respective general methods for the study of the local k-colouring for k > 2 have not been discovered.

References

- Bielak, H., Local Ramsey numbers for some graphs, Discrete Math. 266 (2003), 87– 99.
- [2] Bielak, H., Local Ramsey numbers for some copies of cycles, Discrete Math. 276 (2004), 29–42.
- [3] Burr, S. A., P. Erdös and J. H. Spencer, Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975), 87–99.
- [4] Burr, S. A., J. A. Roberts, On Ramsey numbers for linear forests, Discrete Math. 8 (1974), 245–250.
- [5] Caro, Y., Zs. Tuza, On k-local and k-mean colorings of graphs and hypergraphs, Quart. J. Math. Oxford 44(2) (1993), 385–398.
- [6] Cockayne, E. J., P. J. Lorimer, The Ramsey numbers for stripes, J. Austr. Math. Soc. 19 (1975), 252–256.
- [7] Grossmn, W. J., The Ramsey numbers of the union of two stars, Utilitas Math. 16 (1979), 271–279.
- [8] Gyárfás, A., J. Lehel, R. H. Schelp and Zs. Tuza, Ramsey numbers for local colorings, Graphs Combin. 3 (1987), 267–277.
- [9] Gyárfás, A., J. Lehel, Local k-colorings of graphs and hypergraphs, J. Combin. Theory, Ser. B 43 (1987), 127–139.
- [10] Mizuno, H., I. Sato, Ramsey numbers for unions of some cycles, Discrete Math. 69 (1988), 283–294.
- [11] Ruciński, A., M. Truszczyński, A note on local colorings of graphs, Discrete Math. 164 (1997), 251–255.
- [12] Truszczyński, M., Zs. Tuza, Linear upper bounds for local Ramsey numbers, Graphs Combin. 3 (1987), 67–73.
- [13] Truszczyński, M., Generalized local colorings of graphs, J. Combin. Theory Ser. B 54 (1992), 178–188.

[14] Schelp, R. H., Local and mean k-Ramsey numbers for complete graphs, J. Graph Theory 24 (1997), 201–203.

Halina Bielak Institute of Mathematics Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland e-mail: hbiel@golem.umcs.lublin.pl

Received September 16, 2005