ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
 LUBLIN - POLONIA
 VOL. LIX, 2005

HALINA BIELAK

Local Ramsey numbers for linear forests

Abstract

Let L be a disjoint union of nontrivial paths. Such a graph we call a linear forest. We study the relation between the 2-local Ramsey number $R_{2-l o c}(L)$ and the Ramsey number $R(L)$, where L is a linear forest. L will be called an (n, j)-linear forest if L has n vertices and j maximal paths having an odd number of vertices. If L is an (n, j)-linear forest, then $R_{2-l o c}(L)=(3 n-j) / 2+\lceil j / 2\rceil-1$.

Introduction. Let G, H be simple graphs with at least two vertices. The Ramsey number $R(G, H)$ is the smallest integer n such that in arbitrary two-colouring (say red and blue) of edges of the complete graph K_{n} a red copy of G or a blue copy of H is contained (as subgraphs). If G and H are isomorphic we write $R(G)$ instead of $R(G, G)$. For a graph G and positive integer n by $n G$ we denote the graph consisting of n disjoint copies of G. Moreover, $K_{1, n}$ denotes a star with n edges, and P_{n} denotes a path with n vertices.

A local k-colouring of a graph F is a colouring of the edges of F in such a way that the edges incident to each vertex of F are coloured with at most k different colours. The k-local Ramsey number $R_{k-l o c}(G)$ of a graph G is defined as the smallest integer n such that K_{n} contains a monochromatic

[^0]subgraph G for every local k-colouring of K_{n}. The existence of $R_{k-l o c}(G)$ is proved by Gyárfás, Lehel, Schelp and Tuza in [8]. Most of the results for local k-colourings can be found in [1], [2], [5], [8], [9], [11]-[14].

Let L be a disjoint union of nontrivial paths. Such a graph we call a linear forest. L will be called $a(n, j)$-linear forest if L has n vertices and j maximal paths having an odd number of vertices.

We study the relation between the 2-local Ramsey number $R_{2-l o c}(L)$ and the Ramsey number $R(L)$, where L is an (n, j)-linear forest.

If K_{n} is locally 2 -coloured and $m, m \geq 2$, is the number of colours, we can define a partition $\mathcal{P}\left(K_{n}\right)$ into nonempty sets on the vertices of K_{n} as follows. Let $A_{i j}$ denote the set of vertices in K_{n} incident to edges of colour i and colour j, where $i \neq j$ (we mean that $A_{i j}=A_{j i}$). The vertices incident to edges of only one colour, say i, can be distributed arbitrarily in the sets $A_{i j}$, where $1 \leq j \leq m, j \neq i$. So every partition set $A_{i j}$ induces a 2 -coloured complete subgraph in K_{n}.

The following result is a key tool in studying of the 2-local Ramsey number of graphs.

Proposition 1 (Gyárfás, et al. [8]). Let K_{n} be locally 2-coloured with colours $1,2, \ldots, m$, where $m \geq 2$. Then either $m=3$ and

$$
\mathcal{P}\left(K_{n}\right)=\left\{A_{12}, A_{13}, A_{23}\right\}
$$

or there exists a colour, say 1 , such that

$$
\mathcal{P}\left(K_{n}\right)=\left\{A_{12}, A_{13}, \ldots, A_{1 m}\right\} .
$$

The following interesting results are useful here.
Proposition 2 (Gyárfás, et al. [8]). Let P_{n} denote the path on n vertices. Then

$$
\begin{gathered}
R_{2-l o c}\left(P_{2 k}\right)=3 k-1 \text { if } k \geq 1, \\
R_{2-l o c}\left(P_{2 k+1}\right)=3 k+1 \text { if } k \geq 1 .
\end{gathered}
$$

For disconnected acyclic graphs G the following results are known.
Proposition 3. (Gyárfás, et al. [8]) $R_{2-l o c}\left(n K_{2}\right)=3 n-1$;
(Cockayne, et al. [6]) $R\left(n K_{2}\right)=3 n-1$ if $n \geq 2$.
Moreover, if $a \geq b \geq 1$ then
(Grossman [7]) $R\left(K_{1, a} \cup K_{1, b}\right)=\max \{a+2 b, 2 a+1, a+b+3\}$;
(Bielak [2]) $R_{2-l o c}\left(K_{1, a} \cup K_{1, b}\right)=2 a+b+2$.
For unions of cycles the following relations between the Ramsey and the 2-local Ramsey numbers are known.

Theorem 4. (Burr et al. [3]) $R\left(n C_{3}\right)=5 n, n \geq 2$;
(Gyárfás et al. [8]) $R_{2-l o c}\left(n C_{3}\right)=7 n-2, n \geq 2$.

Theorem 5 (Bielak [2]). $R_{2-l o c}\left(n C_{4}\right)=6 n-1=R\left(n C_{4}\right)$ for $n \geq 2$;
$R_{2-l o c}\left(n C_{2 k+1}\right)=n(4 k+3)-2>R\left(n C_{2 k+1}\right)$ for $k \geq 2$ or $n \geq 2$;
$R_{2-l o c}\left(k\left(C_{3} \cup C_{4}\right)\right)=15 k-2>R\left(k\left(C_{3} \cup C_{4}\right)\right)$ for $k \geq 1$.
Mizuno and Sato [10] proved that $R\left(k\left(C_{3} \cup C_{4}\right)\right)=11 k-1$.
There is a question for which disconnected graphs the 2-local Ramsey number $R_{2-l o c}(G)$ is equal to the Ramsey number $R(G)$. In this paper we study this problem for linear forests.

Investigation of linear forests. Let the complement of a graph G be denoted by \bar{G}. Burr and Roberts proved the following lemma and theorem.
Lemma 6 (Burr, et al. [4]). Let $m \geq 2 k-2>0$ and let G be a graph of order $m+k$ containing a path $P_{m}=u_{1} \ldots u_{m}$ of order m but no path of order $m+1$. Then \bar{G} contains two disjoint paths, each of the form $v^{(1)} u^{(1)} v^{(2)} \ldots u^{(s-1)} v^{(s)}$, where each $u^{(i)}$ is a u_{j} in P_{m} with $2 \leq j \leq 2 k-3$, each of $v^{(i)}$ is a vertex not in P_{m}, and the two paths have a total of $2 k-2$ vertices.
Theorem 7 (Burr, et al. [4]). If L is an (n, j)-linear forest, then $R(L)=$ $(3 n-j) / 2-1$.

The Ramsey number for an (n, j)-linear forest depends on the number of vertices n and the number of odd components j. A natural question is: what is the 2-local Ramsey number for an (n, j)-linear forest? The answer to this question is the principal result of this paper and is presented in the following theorem.
Theorem 8. If L is an (n, j)-linear forest, then $R_{2-l o c}(L)=(3 n-j) / 2+$ $\lceil j / 2\rceil-1$.
Proof. Let $t=(3 n-j) / 2+\lceil j / 2\rceil-1$. First let us consider the colourpartition $\mathcal{P}\left(K_{t-1}\right)=\left\{A_{12}, A_{13}, A_{23}\right\}$ such that $\left|A_{12}\right|=(n-j) / 2+\lceil j / 2\rceil-1=$ $\left|A_{13}\right|,\left|A_{23}\right|=(n-j) / 2+\lfloor j / 2\rfloor$. Note that $\left|A_{12} \cup A_{13}\right| \leq\left|A_{12} \cup A_{23}\right|=$ $\left|A_{13} \cup A_{23}\right|<n$. So, there exists no monochromatic L in this local 2colouring of K_{t-1}.

Thus $R_{2-l o c}(L) \geq t$. We should prove that $R_{2-l o c}(L) \leq t$. Let us consider a local 2-colouring of the edges of K_{t} with m colours. We can assume that $m \geq 2$, else there exists monochromatic L in this local 2-colouring of K_{t}.

Let $P_{2 s}$ and P_{q} be any paths of L. Let L^{\prime} be formed from L by replacing these two paths with a path $P_{2 s+q}$. Note that L is a subgraph of L^{\prime} and the parameter j is the same for L and L^{\prime}. So $R_{2-l o c}\left(L^{\prime}\right) \geq R_{2-l o c}(L)$, and the inequality to be proved remains the same.

Therefore, it suffices to consider only the cases in which L consists of a single path of even order or in which L contains only paths of odd order.

The first case is covered by Proposition 2. Let us consider the second case. The inequality $R_{2-l o c}(L) \leq t$ can be proved by induction on j. Again, the case $j=1$ is covered by Proposition 2.

Assume the result to be true for any linear forest with $j-1$ paths of odd order, $j \geq 2$. Let L consist of j paths of odd order and have n vertices and let P_{l} be a shortest path in L.

Note that

$$
\begin{equation*}
l \leq\lfloor n / j\rfloor \leq\lfloor n / 2\rfloor . \tag{1}
\end{equation*}
$$

Case 1. $\mathcal{P}\left(K_{t}\right)=\left\{A_{12}, A_{13}, A_{23}\right\}$. Without loss of generality we assume that $\left|A_{12}\right| \geq\left|A_{13}\right| \geq 1$ and $\left|A_{12}\right| \geq\left|A_{23}\right| \geq 1$. Then $\left|A_{12}\right| \geq(n-j) / 2+\lceil j / 2\rceil$. Evidently if $\left|A_{13}\right| \geq(n-j) / 2+\lfloor j / 2\rfloor$ then we can easily find L in the colour 1 in the subgraph $\left\langle A_{12} \cup A_{13}\right\rangle$. So let $\left|A_{13}\right| \leq(n-j) / 2+\lfloor j / 2\rfloor-1$. Similarly we can assume that $\left|A_{23}\right| \leq(n-j) / 2+\lfloor j / 2\rfloor-1$. Note that $\left|A_{13} \cup A_{23}\right| \leq n-2$.

Suppose that $\left|A_{13}\right|,\left|A_{23}\right| \geq(l-1) / 2$. Since $\left|A_{12}\right| \geq(l-1) / 2+1$, we define X as a $(3(l-1) / 2+1)$-element subset consisting of $(l-1) / 2$ vertices of A_{13} and of A_{23}, and $(l-1) / 2+1$ vertices of A_{12}. Evidently $\langle X\rangle$ contains P_{l} of colour 1 and of colour 2 in the colouring. Note that $\left|A_{13} \cup A_{23}-X\right| \leq n-l-1$. Hence $K_{t}-X$ does not contain $L-P_{l}$ of colour 3 in the colouring. Since $t-|X|=(3(n-l)-(j-1)) / 2+\lceil j / 2\rceil-1$, by inductive hypothesis there exists a linear forest $L-P_{l}$ in colour 1 or 2 in the colouring. Thus we get the result.

Assume that without loss of generality $\left|A_{23}\right|=a \leq(l-1) / 2-1$. Suppose that $\left|A_{13}\right|=b \geq(l-1) / 2$ and define X as follows: $\left|X \cap A_{13}\right|=(l-$ 1) $/ 2,\left|X \cap A_{12}\right|=l-a,\left|X \cap A_{23}\right|=a$. Moreover, let $\langle X\rangle$ contain all vertices of a $P_{l-2 a}$ in colour 2 from $\left\langle A_{12}\right\rangle$ (if it exists). Thus $\langle X\rangle$ contains P_{l} in colour 1 and in colour 2 (if it is available). Since $\left|A_{13} \cup A_{23}-X\right| \leq$ $(n-j) / 2+\lfloor j / 2\rfloor-1+a-(l-1) / 2-a<\lfloor n / 2\rfloor, K_{t}-X$ does not contain $L-P_{l}$ of colour 3 in the colouring. Thus, by inductive hypothesis, $L-P_{l}$ is of colour 1 or of colour 2 in the colouring of $K_{t}-X$ and we get the result as above.

Therefore, we can assume that $\left|A_{13}\right|=b \leq(l-1) / 2-1$ and $b \geq a$. Then $\left|A_{13} \cup A_{23}\right| \leq l-3$ and $\left\langle A_{13} \cup A_{23}\right\rangle$ does not contain any $L-L_{l}$ in the colour 3. Moreover,

$$
\begin{equation*}
\left|A_{12}\right| \geq\lfloor 3 n / 2\rfloor-1-(a+b)=\lfloor 3(n-2(a+b) / 3) / 2\rfloor-1 . \tag{2}
\end{equation*}
$$

Hence, in view of Theorem 7, there exists a monochromatic path $P=$ $P_{n-\lceil 2(a+b) / 3\rceil}$ in $\left\langle A_{12}\right\rangle$.

Let $S=A_{12}-V(P)$ and $|S|=s$. Note that

$$
s \geq \max \{\lfloor(n-\lceil 2(a+b) / 3\rceil / 2\rfloor-1, b\}
$$

and

$$
\lceil\lceil 2(a+b) / 3\rceil / 2\rceil \leq b .
$$

Therefore, if P is in colour 1 then it can be extended to P_{n} of the same colour by using vertices of A_{13} and vertices of S.

Let us assume that P is in colour 2 . We can assume that $\lceil 2(a+b) / 3\rceil \geq$ $2 a+1$, in the opposite case P can be extended to P_{n} of colour 2 by using vertices of A_{23} and vertices of S.

Then $a \leq\lceil b / 2\rceil-1$ and $a+b<3(l-2) / 4$. Let $P_{m}=u_{1} u_{2} \ldots u_{m}$ be a longest path of colour 2 in $\left\langle A_{12}\right\rangle$.

Set $k=(l-1) / 2$. Evidently by (1)

$$
m \geq n-\lceil 2(a+b) / 3\rceil \geq 2 l-\lceil(l-2) / 2\rceil \geq l+2>l-3=2 k-2
$$

Set $S^{\prime}=A_{12}-V\left(P_{m}\right)$. We can assume that $m \leq n-2 a-1$, else since $\left|A_{12}-(n-2 a)\right| \geq a$ we can find P_{n} in colour 2 .

Then, by (1) and (2), we get

$$
\begin{aligned}
\left|S^{\prime}\right| & \geq\lfloor 3 n / 2\rfloor-1-(a+b)-(n-2 a-1) \\
& =\lfloor n / 2\rfloor+a-b \geq\lfloor n / 2\rfloor-(l-1) / 2+2 \\
& \geq(l+1) / 2+2>k
\end{aligned}
$$

Suppose for a while that $k \geq 2$. Let us consider a subgraph G of $\left\langle A_{12}\right\rangle$ containing all vertices of the path P_{m} and k vertices of S^{\prime}. Since P_{m} is in colour 2, in view of Lemma 6 there are two disjoint paths in colour 1 having a total $2 k-2$ vertices, each path beginning and ending outside the set $V\left(P_{m}\right)$ and not using the vertices $u_{1}, u_{l-3}, u_{l-2}, \ldots, u_{m}$. By maximality of m we have that the edges between u_{1} and end vertices of these paths are in colour 1. Therefore we get a path of order $2 k-1$ in colour 1 covering k vertices u_{i}, where $i \leq 2 k-3=l-4$. Using a vertex of A_{13} and the vertex $u_{l-3}=u_{2 k-2}$ we can easily extend this path to a path P^{\prime} of order $2 k+1=l$ in colour 1.

Let

$$
X=V\left(P^{\prime}\right) \cup \bigcup_{i=1}^{2 k-3}\left\{u_{i}\right\}
$$

Suppose that $k=1$. Then let $X=V\left(P_{3}\right) \cup\{v\}$, where P_{3} is a path in $\left\langle A_{12}\right\rangle$ of the colour 2 and $v \in A_{13}$.

Note that in the both cases, $\langle X\rangle$ contains paths of order l in colour 1 and 2. Since $|X|=(3 l-1) / 2$ and $t-|X|=(3(n-l)-(j-1)) / 2+\lceil j / 2\rceil-1$, by inductive hypothesis we get $L-P_{l}$ of colour 1 or 2 in the graph $K_{t}-X$ in the colouring. The result is proved.

Case 2. $\mathcal{P}\left(K_{t}\right)=\left\{A_{12}, A_{13}, \ldots, A_{1 m}\right\}$. Without loss of generality we can assume that $\left|A_{12}\right| \geq\left|A_{13}\right| \geq \cdots \geq\left|A_{1 m}\right|$. Let $M=\max \left\{q: P_{q} \in L\right\}$. If $\left|A_{12}\right|<M$ then we can change each colour i, for $3 \leq i \leq m$, to colour 2 . Since there exists no P_{M} in colour 2 then in view of Theorem 7 we get L in colour 1. Therefore we can assume that $\left|A_{12}\right| \geq M$. Similarly without loss of generality we can assume that $\left|A_{1 i}\right| \geq l, i=2, \ldots, m$. Moreover, $m \geq 3$, else we have a global 2 -colouring and this case is covered by Theorem 7 .

If $\left|A_{13}\right| \geq\lceil n / 2\rceil$, then we have a P_{n} of colour 1 in the subgraph $\left\langle A_{12} \cup A_{13}\right\rangle$. So L of this colour can be easily created as well.

Thus let $\left|A_{13}\right| \leq\lceil n / 2\rceil-1$. Since $n-l \geq n-\lfloor n / j\rfloor \geq n-\lfloor n / 2\rfloor \geq\lceil n / 2\rceil$, the subgraph $\left\langle A_{1 i}\right\rangle$ does not contain $L-P_{l}$ in colour i for $i \geq 3$. Let us define X as a $(l+(l-1) / 2)$-element subset of $V\left(K_{t}\right)$ containing $(l-1) / 2$ vertices from A_{13} and l vertices of a P_{l} in colour 2 if it exists (else take l vertices from A_{12} arbitrarily). The graph $K_{t}-X$ consists of $(3(n-l)-(j-1)) / 2+\lceil j / 2\rceil-1$ vertices so by inductive hypothesis it contains $L-P_{l}$ of colour 1 or of colour 2 in the colouring. Since $\langle X\rangle$ contains P_{l} in colour 1 and in colour 2 (if it is available), we get the result.

Immediately by Theorems 7,8 we get the following result.
Corollary 9. If L is an (n, j)-linear forest, then

$$
R_{2-l o c}(L)=R(L), \text { for } j=0
$$

and

$$
R_{2-l o c}(L)>R(L), \text { for } j>0
$$

Final remark. The respective general methods for the study of the local k-colouring for $k>2$ have not been discovered.

References

[1] Bielak, H., Local Ramsey numbers for some graphs, Discrete Math. 266 (2003), 8799.
[2] Bielak, H., Local Ramsey numbers for some copies of cycles, Discrete Math. 276 (2004), 29-42.
[3] Burr, S. A., P. Erdös and J. H. Spencer, Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975), 87-99.
[4] Burr, S. A., J. A. Roberts, On Ramsey numbers for linear forests, Discrete Math. 8 (1974), 245-250.
[5] Caro, Y., Zs. Tuza, On k-local and k-mean colorings of graphs and hypergraphs, Quart. J. Math. Oxford 44(2) (1993), 385-398.
[6] Cockayne, E. J., P. J. Lorimer, The Ramsey numbers for stripes, J. Austr. Math. Soc. 19 (1975), 252-256.
[7] Grossmn, W. J., The Ramsey numbers of the union of two stars, Utilitas Math. 16 (1979), 271-279.
[8] Gyárfás, A., J. Lehel, R. H. Schelp and Zs. Tuza, Ramsey numbers for local colorings, Graphs Combin. 3 (1987), 267-277.
[9] Gyárfás, A., J. Lehel, Local k-colorings of graphs and hypergraphs, J. Combin. Theory, Ser. B 43 (1987), 127-139.
[10] Mizuno, H., I. Sato, Ramsey numbers for unions of some cycles, Discrete Math. 69 (1988), 283-294.
[11] Ruciński, A. , M. Truszczyński, A note on local colorings of graphs, Discrete Math. 164 (1997), 251-255.
[12] Truszczyński, M., Zs. Tuza, Linear upper bounds for local Ramsey numbers, Graphs Combin. 3 (1987), 67-73.
[13] Truszczyński, M., Generalized local colorings of graphs, J. Combin. Theory Ser. B 54 (1992), 178-188.
[14] Schelp, R. H., Local and mean k-Ramsey numbers for complete graphs, J. Graph Theory 24 (1997), 201-203.

Halina Bielak
Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: hbiel@golem.umcs.lublin.pl
Received September 16, 2005

[^0]: 2000 Mathematics Subject Classification. 05C55.
 Key words and phrases. Linear forest, local colouring, local Ramsey number, Ramsey number.

