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On certain subclasses of multivalent functions
involving Cho–Kwon–Srivastava operator

Abstract. By making use of the method of differential subordination, we
investigate inclusion relationships among certain subclasses of analytic and
p-valent functions, which are defined here by means of Cho–Kwon–Srivastava
operator Iλ

p (a, c). The integral preserving properties in connection with this
operator are also studied.

1. Introduction. Let Ap be the class of functions of the form

f(z) = zp +
∞∑

k=1

ap+kz
p+k, p ∈ N = {1, 2, . . . },(1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. We
write A1 = A. If f and g are analytic in U, we say that f is subordinate
to g, written symbolically as f ≺ g or f(z) ≺ g(z), z ∈ U, if there exists a
Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0
and |w(z)| < 1 such that f(z) = g(w(z)), z ∈ U.
For fixed parameters A, B (−1 ≤ B < A ≤ 1), we denote by P (A,B) the
class of functions of the form

φ(z) = 1 + c1z + c2z
2 + · · ·
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which are analytic in U and satisfy the condition

φ(z) ≺ 1 + Az

1 + Bz
, z ∈ U.

The class P (A,B) was investigated by Janowski [6]. By S?
p (A,B) we mean

the class of functions f ∈ Ap such that zf ′(z)/pf(z) ∈ P (A,B). Similarly,
Kp(A,B) is the class of functions f ∈ Ap satisfying (zf ′(z))′ /pf ′(z) ∈
P (A,B).
It is easily seen that S?

p (1− (2η/p),−1) = S?
p (η), Kp (1− (2η/p),−1) =

Kp(η) (0 ≤ η < p), the subclasses of functions in Ap which are respectively
p-valently starlike of order η and p-valently convex of order η in U.
In our present investigation, we shall also make use of the Gauss hyper-
geometric function 2F1 defined by

2F1 (a, b; c; z) =
∞∑

n=0

(a)n (b)n

(c)n

zn

(1)n
,(1.2)

where a, b, c ∈ C, c /∈ Z−0 = {0,−1,−2, . . . } and (κ)n denotes the Pochham-
mer symbol (or the shifted factorial) given, in terms of the Gamma function
Γ, by

(κ)n =
Γ(κ + n)

Γ(κ)
=

{
κ(κ + 1) · · · (κ + n− 1), n ∈ N,

1, n = 0.

We note that the series defined by (1.2) converges absolutely for z ∈ U and
hence 2F1 represents an analytic function in the open unit disk U (see, for
details [17, Chapter 14]).
We now define a function φp(a, c; z) by

φp(a, c; z) = zp +
∞∑

k=1

(a)k

(c)k
zp+k, z ∈ U,

where a ∈ R and c ∈ R \ Z−0 . With the aid of φp(a, c; z), we consider a
function φ

(+)
p (a, c; z) defined by

φp(a, c; z) ? φ(+)
p (a, c; z) =

zp

(1− z)λ+p
, z ∈ U,

where λ > −p. This function yields the following family of linear operators

Iλ
p (a, c)f(z) = φ(+)

p (a, c; z) ? f(z), z ∈ U,(1.3)

where a, c ∈ R\Z−0 . (Here the symbol “?” stands for the Hadamard product
(or convolution)). For a function f ∈ Ap, given by (1.1), it follows from (1.3)
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that for λ > −p and a, c ∈ R \ Z−0

(1.4)
Iλ

p (a, c)f(z) = zp +
∞∑

k=1

(c)k (λ + p)k

(a)k (1)k
ap+kz

p+k

= zp
2F1 (c, λ + p; a; z) ? f(z), z ∈ U.

From (1.4), we deduce that

z
(
Iλ

p (a, c)f(z)
)′

= (λ + p)Iλ+1
p (a, c)f(z)− λIλ

p (a, c)f(z)(1.5)

and

z
(
Iλ

p (a + 1, c)f(z)
)′

= aIλ
p (a, c)f(z)− (a− p)Iλ

p (a + 1, c)f(z).(1.6)

We also note that

I0
p(p + 1, 1)f(z) = p

∫ z

0

f(t)
t

dt,

I0
p (p, 1)f(z) = I1

p(p + 1, 1)f(z) = f(z),

I1
p(p, 1)f(z) =

zf ′(z)
p

,

I2
p (p, 1)f(z) =

2zf ′(z) + z2f ′′(z)
p(p + 1)

,

I2
p(p + 1, 1)f(z) =

f(z) + zf ′(z)
p + 1

,

In
p (a, a)f(z) = Dn+p−1f(z), n ∈ N, n > −p,

the Ruscheweyh derivative of (n + p− 1)th order [5] and

Iµ
p (µ + p + 1, 1)f(z) = Fµ,p(f)(z), µ > −p,

where Fµ,p(f) denotes a familiar integral operator defined by (2.10) below
(see Section 2).
The operator Iλ

p (a, c) (λ > −p, a, c ∈ R \ Z−0 ) was recently introduced
by Cho et al. [1], who investigated (among other things) some inclusion
relationships and properties of various subclasses of multivalent functions
in Ap, which were defined by means of the operator Iλ

p (a, c). For λ = c = 1
and a = n + p, the Cho–Kwon–Srivastava operator Iλ

p (a, c) yields the Noor
integral operator I1

p (n+p, 1) = In,p (n > −p) of (n+p−1)th order, studied
by Liu and Noor [7] (see also [11], [12]). The linear operator Iλ

1 (µ + 2, 1)
(λ > −1, µ > −2) was also recently introduced and studied by Choi et
al. [3]. For relevant details about further special cases of the Choi–Saigo–
Srivastava operator Iλ

1 (µ+2, 1), the interested reader may refer to the works
by Cho et al. [1] and Choi et al. [3] (see also [2]).
Using the Cho–Kwon–Srivastava operator Iλ

p (a, c), we now define a sub-
class of Ap as follows:
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Definition. For fixed parameters A, B (−1 ≤ B < A ≤ 1) and α ≥ 0, we
say that a function f ∈ Ap is in the class T λ

p,α (a, c, A, B) if

(1− α)
Iλ+1

p (a, c)f(z)
Iλ

p (a, c)f(z)
+ α

Iλ+2
p (a, c)f(z)

Iλ+1
p (a, c)f(z)

∈ P (A,B), z ∈ U,(1.7)

where λ > −p and a, c ∈ R \ Z−0 .

It is readily seen that

T 0
p,0 (p, 1, A, B) = S?

p (A,B)

and

T 1
p,0

(
p, 1,

pA + B

p + 1
, B

)
= T 0

p,1

(
p, 1,

pA + B

p + 1
, B

)
= Kp(A,B).

In the present paper, we obtain inclusion relationships among the classes
T λ

p,α (a, c, A, B). The integral preserving properties in connection with the
operator Iλ

p (a, c) are considered. Relevant connections of the results pre-
sented here with those obtained in earlier works are also pointed out.

2. Main results. Unless otherwise mentioned, we assume throughout the
sequel that −1 ≤ B < A ≤ 1, λ > −p and p ∈ N.

Theorem 1. Let f ∈ T λ
p,α (a, c, A, B) and 0 < α < λ + p + 1 satisfy

(λ + p + 1)(1−A)− α(1−B) ≥ 0.(2.1)

(i) Then

T λ
p,α (a, c, A, B) ⊂ T λ

p,0

(
a, c, Ã, B

)
,

where

Ã = 1− 1
λ + p + 1− α

{(λ + p + 1)(1−A)− α(1−B)} .(2.2)

Further for f ∈ T λ
p,α (a, c, A, B), we also have

Iλ+1
p (a, c)f(z)
Iλ

p (a, c)f(z)
≺ α

λ + p + 1− α

(
1

Q(z)

)
= q(z), z ∈ U,(2.3)

where

Q(z) =


∫ 1

0
t

λ+p+1
α

(
1+Btz
1+Bz

)λ+p+1
α (A−B

B )
dt, B 6= 0,∫ 1

0
t

λ+p+1
α exp

(
λ+p+1

α (t− 1)Az
)

dt, B = 0.

(2.4)

and q(z) is the best dominant of (2.3).
(ii) If, in addition to (2.1) one has −1 ≤ B < A ≤ 0, then

T λ
p,α (a, c, A, B) ⊂ T λ

p,0 (a, c, 1− 2ρ,−1) ,
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where ρ =
[
2F1

(
1, λ+p+1

α

(
B−A

B

)
; λ+p+1

α ; B
B−1

)]−1
. The result is the best

possible.

Proof. Let f ∈ T λ
p,α (a, c, A, B) and suppose that the function g is defined

by

g(z) = z

(
Iλ

p (a, c)f(z)
zp

)1/(λ+p)

(2.5)

and r1 = sup{r : g(z) 6= 0, 0 < |z| < r < 1}. Taking logarithmic differ-
entiation in (2.5) and using the identity (1.5) in the resulting equation, it
follows that

ϕ(z) =
zg′(z)
g(z)

=
Iλ+1

p (a, c)f(z)
Iλ

p (a, c)f(z)
(2.6)

is analytic in |z| < r1 and ϕ(0) = 1. Carrying out logarithmic differentiation
in (2.6) followed by the use of (1.5) and (1.7) easily lead to

P (z) +
zP ′(z)

βP (z) + γ
≺ 1 + Az

1 + Bz
, |z| < r1,

where

P (z) =
(

1− 1
β

)
ϕ(z) +

1
β

, β =
λ + p + 1

α
and γ = −1.

Hence by applying a result [8, Corollary 3.2], we get

ϕ(z) ≺ α

λ + p + 1− α

(
1

Q(z)

)
= q(z) ≺ 1 + Ãz

1 + Bz
, |z| < r1,

where Ã is given by (2.2), Q is given by (2.4) and q is the best dominant
of (2.3). The remaining part of the proof can now be deduced on the same
lines as in Theorem 1 [15, p. 325] (see also [8]). This completes the proof
of Theorem 1. �

Putting a = p, c = α = 1, λ = 0 and replacing A by (pA + B)/(p +
1) in Theorem 1, we obtain the following result which, in turn yields the
corresponding work of Srivastava et al. [16, Corollary 7] for A = 1− (2η/p)
(0 ≤ η < p) and B = −1 (see also [15]).

Corollary 1. For −1 ≤ B < 0 and B < A ≤ −(B/p), we have

Kp(A,B) ⊂ S?
p (ρ1),

where ρ1 = p
[
2F1

(
1, p(B−A)

B ; p + 1; B
B−1

)]−1
. The result is the best possible.

Setting a = µ + p + 1, c = α = 1, λ = µ and replacing A by {pA + (µ +
1)B}/(µ + p + 1) in Theorem 1, we get
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Corollary 2. If µ > −p, −1 ≤ B < 0 and

B < A ≤ min
{

1 +
µ(1−B)

p
,−(µ + 1)B

p

}
,

then for f ∈ S?
p (A,B) we have

<
(

zµf(z)∫ z
0 tµ−1f(t) dt

)
> ρ2, z ∈ U,

where ρ2 = (p + µ)
[
2F1

(
1, p(B−A)

B ;µ + p + 1; B
B−1

)]−1
. The result is the

best possible.

Substituting A = 1− (2η/p) (0 ≤ η < p) and B = −1 in Theorem 1, we
get

Corollary 3. If 0 < α < λ + p + 1 and max
{

pα
λ+p+1 , p

2

}
≤ η < p, then

T λ
p,α (a, c, 1− (2η/p),−1) ⊂ T λ

p,0 (a, c, 1− 2ρ3,−1) ,

where ρ3 =
[
2F1

(
1, 2(λ+p+1)(p−η)

pα ; λ+p+1
α ; 1

2

)]−1
. The result is the best pos-

sible.

Remarks. (i) In the case A = 1 − (2η/p) (0 ≤ η < p) and B = −1,
Corollary 2 gives the result contained in [14, Corollary 3.5].
(ii) Letting a = p, c = 1, λ = 0, α = {(p + 1)δ}/(p + δ), η = pδ/(p + δ)
in Corollary 3 and using the well-known identity

2F1

(
a, b;

a + b + 1
2

;
1
2

)
=

√
π Γ
(

a+b+1
2

)
Γ
(

a+1
2

)
Γ
(

b+1
2

) ,
we observe that if f ∈ Ap satisfies

<
{

(1− δ)
zf ′(z)
f(z)

+ δ

(
1 +

zf ′′(z)
f ′(z)

)}
> 0, z ∈ U,

for δ ≥ p, then f ∈ S?
p (σ) which in turn implies that f ∈ Kp

(
(δ−1)σ

δ

)
, where

σ = pΓ((2p+δ)/2δ)√
π Γ((p+δ)/δ)

. This for p = 1 reduces to a result of Miller et al. [10].

Theorem 2. If 0 < α < λ + p + 1 and 0 ≤ η < p, then

f ∈ T λ
p,0 (a, c, 1− (2η/p),−1) =⇒ f ∈ T λ

p,α(a, c, 1− 2ρ4,−1)

in |z| < R(p, α, λ, η), where ρ4 = {α(p−η)+η(λ+p+1)}/p(λ + p + 1) and

(2.7)

R(p, α, λ, η)

=


p−η
p−2η + pα−

√
(pα)2+(λ+p+1−α){(λ+p+1−α)η2+2p(p−η)α}

(λ+p+1−α)(p−2η) , η 6= p
2 ,

λ+p+1−α
λ+p+α+1 , η = p

2 .

The result is the best possible.
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Proof. We have

Iλ+1
p (a, c)f(z)
Iλ

p (a, c)f(z)
=

η

p
+
(

1− η

p

)
u(z),(2.8)

where u(z) = 1 + u1z + u2z
2 + · · · is analytic and has a positive real part

in U. Taking logarithmic differentiation in (2.8) followed by the use of the
identity (1.5) and after simplifications, we deduce that

(2.9)

<

{
(1−α)

Iλ+1
p (a, c)f(z)
Iλ

p (a, c)f(z)
+α

Iλ+2
p (a, c)f(z)

Iλ+1
p (a, c)f(z)

}
−α(p−η)+η(λ+p+1)

p(λ + p + 1)

≥ (p− η)(λ + p + 1− α)
p(λ + p + 1)

×
{
<(u(z))− αp|zu′(z)|

(λ + p + 1− α)|η + (p− η)u(z)|

}
.

Now using the well-known [8] estimates

|zu′(z)| ≤ 2r

1− r2
<(u(z)) and <(u(z)) ≥ 1− r

1 + r
, |z| = r < 1

in (2.9), we get

<

{
(1− α)

Iλ+1
p (a, c)f(z)
Iλ

p (a, c)f(z)
+ α

Iλ+2
p (a, c)f(z)

Iλ+1
p (a, c)f(z)

}
− α(p− η) + η(λ + p + 1)

p(λ + p + 1)

≥ (p− η)(λ + p + 1− α)
p(λ + p + 1)

< (u(z))

×
{

1− 2αpr

(λ + p + 1− α) [η(1− r2) + (p− η)(1− r)2]

}
which is certainly positive if r < R(p, α, λ, η), where R(p, α, λ, η) is given
by (2.7).
It is easily seen that the bound R(p, α, λ, η) is the best possible for the
function f ∈ Ap defined by

Iλ+1
p (a, c)f(z)
Iλ

p (a, c)f(z)
=
(

1− η

p

)
1 + z

1− z
+

η

p
,

where 0 ≤ η < p and z ∈ U. This completes the proof of the theorem. �

Remark. For a = p, c = α = 1 and λ = 0, we get Corollary 3.2 in [14].
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For a function f ∈ Ap and µ > −p, the integral operator Fµ,p : Ap −→ Ap

is defined by [3]

(2.10)

Fµ,p(f)(z) =
µ + p

zp

∫ z

0
tµ−1f(t) dt

=

(
zp +

∞∑
k=1

µ + p

µ + p + k
zp+k

)
? f(z)

= zp
2F1 (1, µ + p;µ + p + 1; z) ? f(z), z ∈ U.

It follows from (2.10) that

(2.11)
z
(
Iλ

p (a, c)Fµ,p(f)(z)
)′

= (µ + p)Iλ
p (a, c)f(z)− µIλ

p (a, c)Fµ,p(f)(z), z ∈ U.

We now prove

Theorem 3. Let µ be a complex number satisfying

<(µ) ≥ λ(A−B) + p(A− 1)
(1−B)

.

(i) If f ∈ T λ
p,0 (a, c, A, B), then the function Fµ,p(f) defined by (2.10)

belongs to the class T λ
p,0 (a, c, A, B). Furthermore,

Iλ+1
p (a, c)Fµ,p(f)(z)
Iλ

p (a, c)Fµ,p(f)(z)
≺ 1

λ + p

(
1

Q1(z)
− (µ− λ)

)
= q1(z), z ∈ U,

where

Q1(z) =


∫ 1

0
tµ+p−1

(
1+Btz
1+Bz

) (λ+p)(A−B)
B

dt, B 6= 0,∫ 1

0
tµ+p−1 exp ((λ + p)(t− 1)Az) dt, B = 0

and q1 is the best dominant.
(ii) If −1 ≤ B < 0, µ is real and satisfies

µ ≥ max
{

(λ + p)(B −A)
B

− p− 1,−(p + λ)(1−A)
(1−B)

+ λ

}
,

then

f ∈ T λ
p,0 (a, c, A, B) =⇒ Fµ,p(f) ∈ T λ

p,0

(
a, c, 1− 2ρ′,−1

)
,

where

ρ′ =
1

λ+p

{
(µ+p)

[
2F1

(
1,

(λ+p)(B−A)
B

;µ+p+1;
B

B−1

)]−1

− (µ−λ)

}
.

The result is the best possible.
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Proof. We put

g(z) = z

(
Iλ

p (a, c)Fµ,p(f)(z)
zp

)1/(λ+p)

(2.12)

and r1 = sup{r : g(z) 6= 0, 0 < |z| < r < 1}. Then g is single valued and
analytic in |z| < r1. By carrying out logarithmic differentiation in (2.12)
and using the identity (1.5) for the function Fµ,p(f), it follows that

ϕ(z) =
zg′(z)
g(z)

=
Iλ+1

p (a, c)Fµ,p(f)(z)
Iλ

p (a, c)Fµ,p(f)(z)
(2.13)

is analytic in |z| < r1 and ϕ(0) = 1. Now, (1.5) and (2.11) easily lead to

(λ + p)
Iλ+1

p (a, c)Fµ,p(f)(z)
Iλ

p (a, c)Fµ,p(f)(z)
+ (µ− λ) = (µ + p)

Iλ
p (a, c)f(z)

Iλ
p (a, c)Fµ,p(f)(z)

.

(2.14)

Since f ∈ T λ
p,0 (a, c, A, B), it is clear that Iλ

p (a, c)f(z) 6= 0 in 0 < |z| < 1.
So, (2.13) and (2.14) give

Iλ
p (a, c)Fµ,p(f)(z)
Iλ

p (a, c)f(z)
=

µ + p

(λ + p)ϕ(z) + (µ− λ)
.(2.15)

Taking logarithmic differentiation in the above expression and using (2.11)
in the resulting equation, we get

Iλ+1
p (a, c)f(z)
Iλ

p (a, c)f(z)
= ϕ(z) +

zϕ′(z)
(λ + p)ϕ(z) + (µ− λ)

, |z| < r1.(2.16)

Hence by the hypothesis and (2.16) that

ϕ(z) +
zϕ′(z)

βϕ(z) + γ
≺ 1 + Az

1 + Bz
, |z| < r1,

where β = λ + p and γ = µ− λ.
Proceeding on the same lines as in Theorem 2 [15, p. 328], we can prove
the assertions (i) and (ii) of the theorem. �

Letting a = p, c = 1 and λ = 0 (or a = p, c = 1, λ = 1 and replacing A
by (pA + B)/(p + 1)) in Theorem 3, we deduce the following corollary.

Corollary 4. If −1 ≤ B < 0, µ is real and satisfies

µ ≥ max
{

p(B −A)
B

− p− 1, −p(1−A)
(1−B)

}
,

then
f ∈ S?

p (A,B) =⇒ Fµ,p(f) ∈ S?
p (τ)

and
f ∈ Kp(A,B) =⇒ Fµ,p(f) ∈ Kp (τ) ,
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where τ = (µ+p)
[
2F1

(
1, p(B−A)

B ;µ + p + 1; B
B−1

)]−1
−µ. The result is the

best possible.

Remark. Taking A = 1 = (2η/p) (0 ≤ η < p) and B = −1 in Corollary 4,
we obtain the results contained in [15, Remark 2] which also improves the
corresponding work of Fukui et al. [4] for η = 0 and p = 1.

To establish our next result, we need the following lemma.

Lemma A ([13]). Let φ be analytic in U with φ(0) = 1 and φ(z) 6= 0 for
0 < |z| < 1.
(i) Let B 6= 0 and γ ∈ C \ {0} satisfy either∣∣∣∣γ(A−B)

B
− 1
∣∣∣∣ ≤ 1 or

∣∣∣∣γ(A−B)
B

+ 1
∣∣∣∣ ≤ 1.

If φ satisfies

1 +
zφ′(z)
γφ(z)

≺ 1 + Az

1 + Bz
, z ∈ U,

then

φ(z) ≺ (1 + Bz)γ(A−B)/B , z ∈ U
and this is the best dominant.
(ii) Let B = 0 and γ ∈ C \ {0} be such that |γA| < π. If φ satisfies

1 +
zφ′(z)
γφ(z)

≺ 1 + Az, z ∈ U,

then

φ(z) ≺ eγAz, z ∈ U
and this is the best dominant.

Theorem 4. Assume that B 6= 0, λ > −p and ν ∈ C \ {0} satisfies either∣∣∣∣ν(λ + p)(A−B)
B

− 1
∣∣∣∣ ≤ 1 or

∣∣∣∣ν(λ + p)(A−B)
B

+ 1
∣∣∣∣ ≤ 1.

If f ∈ T λ
p,0 (a, c, A, B), then(
Iλ

p (a, c)f(z)
zp

)ν

≺ q2(z) = (1 + Bz)ν(λ+p)(A−B)/B , z ∈ U

and q2 is the best dominant. In the case B = 0, i.e., for f ∈ T λ
p,0 (a, c, A, 0),

we have (
Iλ

p (a, c)f(z)
zp

)ν

≺ eν(λ+p)Az, z ∈ U,

where ν 6= 0, |ν| < π/(λ + p)A and this is the best dominant.
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Proof. Let us put

ϕ(z) =

(
Iλ

p (a, c)f(z)
zp

)ν

, z ∈ U.(2.17)

Then ϕ is analytic in U, ϕ(0) = 1 and ϕ(z) 6= 0 for z ∈ U. By making use
of (1.5) in the logarithmic differentiation of (2.17), we deduce that

1 +
zϕ′(z)

ν(λ + p)ϕ(z)
≺ 1 + Az

1 + Bz
, z ∈ U.

Now the assertions of the theorem follows by using Lemma A with γ =
ν(λ + p). This completes the proof of Theorem 4. �

Upon setting a = p, c = 1 and λ = 0 (or a = p, c = λ = 1 and replacing
A by (pA + B)/(p + 1)) in Theorem 4, we obtain

Corollary 5. Assume that B 6= 0 and ν ∈ C \ {0} satisfies either∣∣∣∣νp(A−B)
B

− 1
∣∣∣∣ ≤ 1 or

∣∣∣∣νp(A−B)
B

+ 1
∣∣∣∣ ≤ 1.

Then

(i) f ∈ S?
p (A,B) =⇒

(
f(z)
zp

)ν

≺ 1
(1 + Bz)νp(B−A)/B

, z ∈ U

and

(ii) f ∈ Kp(A,B) =⇒
(

f ′(z)
zp−1

)ν

≺ pν

(1 + Bz)νp(B−A)/B
, z ∈ U.

The above implications are the best possible.

Remark. In the special case when A = 1 − 2ξ (0 ≤ ξ < 1), B = −1 and
ν = p = 1, Corollary 5 gives the following best possible results.
If f ∈ A, then

<
(

zf ′(z)
f(z)

)
> ξ =⇒ <

(
f(z)

z

)
>

1
22(1−ξ)

, z ∈ U

and

<
(

1 +
zf ′′(z)
f ′(z)

)
> ξ =⇒ <

(
f ′(z)

)
>

1
22(1−ξ)

, z ∈ U.
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