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Tensor fields on LM
induced by tensor fields on M
by means of connections on M

Abstract. We describe all natural operators A transforming a classical lin-
ear connection ∇ on an m-dimensional manifolds M and a tensor field t of
type (r, s) on M into a tensor field A(∇, t) of type (p, q) on the frame bundle
LM over M .

0. Introduction. There are some equivalent notions of classical linear con-
nections, [1]–[3]. They are covariant derivatives ∇ satisfying well-known
properties, they are systems of Christoffel symbols Γi

jk with the well-known
transformation rules, they are homothety invariant distributions H on the
tangent bundle such that TTM = V TM ⊕ H, they are so-called hori-
zontal liftings ( )H to the tangent bundle, they are fiber linear sections
λ : TM → J1TM of the first jet prolongation of the tangent bundle, and
they are sections of so-called connection bundle QM . (We recall that the
connection bundle on a manifold M is QM = π−1(idTM ) ⊂ T ∗M ⊗ J1TM ,
where π : T ∗M ⊗ J1TM → T ∗M ⊗ TM is the usual projection).
In [2, Theorem 33.16], it is described how a classical linear connection

∇ on an m-dimensional manifold M and a tensor field t of type (r, s) on
M induce tensor field A(∇, t) of type (p, q) on M , provided r < s. More
precisely, there are classified all respective natural operators.
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In the present paper, we study how a classical linear connection ∇ on an
m-dimensional manifoldM and a tensor field t of type (r, s) onM can induce
a tensor field A(∇, t) on the linear frame bundle LM overM . This problem
is reflected in the concept of Mfm-natural operators A : Q × T (r,s)  
T (p,q)L, where Mfm is the category of all m-dimensional manifolds and
their embeddings. We describe all natural operators A in question.
We recall that anMfm-natural operator A : Q× T (r,s)  T (p,q)L in the
sense of [2] is a regular andMfm-invariant system of operators

A : Γ(QM)× Γ(T (r,s)M)→ Γ(T (p,q)(LM))

for any manifold M , where Γ(QM) is the set of sections of QM → M

(classical linear connections on M), Γ(T (r,s)M) is the space of all tensor
fields of type (r, s) on M and Γ(T (p,q)(LM)) is the space of all tensor fields
of type (p, q) on LM . The invariance of A means that for any Mfm-map
ϕ : M → N if connections ∇1 on M and ∇2 on N are ϕ-related and tensor
fields τ1 and τ2 of type (r, s) on M and N are ϕ-related then tensor fields
A(∇1, τ1) and A(∇2, τ2) of type (p, q) on LM and LN are Lϕ-related, where
Lϕ : LM → LN is the induced fibered map. The regularity of A means
that A transforms smoothly parametrized families of sections into smoothly
parametrized families of sections.
From now on x1, . . . , xm is the usual coordinate system on Rm. All mani-
folds and maps are assumed to be smooth (of class C∞).

1. TheMfm-natural operators Q×T (r,s)  T (0,0)L of finite order.
Let θ = ( ∂

∂x1 |0
, . . . , ∂

∂xm |0) ∈ L0Rm be the frame. Let Sk be the vector space
of all k-jets at 0 ∈ Rm of classical linear connections ∇ on Rm given by the
Christoffel symbols Γi

jl : Rm → R satisfying
m∑

j,l=1

Γi
jl(x)xjxl = 0 for i = 1, . . . ,m .

Equivalently, Sk is the space of all k-jets at 0 of classical linear connections
∇ on Rm such that the usual coordinate system x1, . . . , xm on Rm is a
normal coordinate system for ∇ with center 0.
Let us consider a smooth function

µ : Sk × Jk
0 T (r,s)Rm → R.

Given a classical linear connection ∇ on an m-manifold M and a tensor
field t of type (r, s) on M we define a smooth map B<µ>(∇, t) : LM → R
by

B<µ>(∇, t)(σ) := µ
(
jk
0 (ϕ∗∇), jk

0 (ϕ∗t)
)

for σ ∈ (LM)x, x ∈M , where ϕ is a normal coordinate system on M for ∇
with center x such that ϕ(x) = 0 and Lϕ(σ) = θ. The definition is correct
because germx(ϕ) is determined uniquely. (Indeed, for another such normal
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coordinate system ϕ1 we have ϕ1 = A ◦ ϕ near x for some A ∈ Gl(m) (see
[1]) with LA(θ) = θ. So, A = id and ϕ1 = ϕ near x, as well.)
The correspondence B<µ> : Q × T (r,s)  T (0,0)L is an Mfm-natural
operator of order k. It can be proved as follows.
Let jk

x∇1 = jk
x∇2, jk

xt1 = jk
xt2, where x ∈ M , σ ∈ LxM . Then

jk+2
0x

Exp∇1 = jk+2
0x

Exp∇2 (it is well-known fact). Then jk+2
x ϕ1 = jk+2

x ϕ2,
where ϕ1, ϕ2 are the unique normal coordinates for ∇1 and ∇2 determined
by σ in question.
Then jk

0 ((ϕ1)∗∇1) = jk
0 ((ϕ2)∗∇2) and jk

0 ((ϕ1)∗t1) = jk
0 ((ϕ2)∗t2). Then

B<µ>(∇1, t1)(σ) = B<µ>(∇2, t2)(σ) as well.

Proposition 1. Any Mfm-natural operator B : Q × T (r,s)  T (0,0)L of
finite order k is equal to B<µ> for some unique smooth function µ : Sk ×
Jk

0 T (r,s)Rm → R.

Proof. Let B be an operator in question. Define µ : Sk × Jk
0 T (r,s)Rm → R

by
µ(jk

0 (∇), jk
0 t) = B(∇, t)θ.

Clearly, B = B<µ>. �

2. Some vector fields on LM from a connection on M . Let ∇ be a
classical linear connection on M . For any ξ ∈ Rm we have the fundamental
horizontal vector field Bξ(∇) on LM defined by Tπ(Bξ(∇)l) = l(ξ), l ∈ LM
and π : LM →M is the bundle projection.
For any A ∈ gl(m) we have the fundamental vertical vector field A∗ on

LM . We have the following well-known fact.

Proposition 2. Let ei be the usual basis in Rm and Ej
l be the usual basis in

gl(m). Given a classical linear connection ∇ on M the vector fields Bei(∇)
and (Ej

l )
∗ for i, j, l = 1, . . . ,m form the basis over C∞(LM) of vector fields

on LM .

3. The Mfm-natural operators A : Q × T (r,s)  T (p,q)L of finite
order. The space of allMfm-natural operators A : Q×T (r,s)  T (p,q)L of
finite order k is (in obvious way) the module over the algebra of all (classified
in Section 1)Mfm-natural operators B : Q× T (r,s)  T (0,0)L of order k.

Proposition 3. The module of allMfm-natural operators A : Q×T (r,s)  
T (p,q)L of order k <∞ is free and finite dimensional. Let F a(∇) be the basis
of tensor fields on LM of type (p, q) obtained from the basis (Bei(∇), (Ej

l )
∗)

by the dualization and tensoring. Then the (constant in the second factor)
Mfm-natural operators F a : Q × T (r,s)  T (p,q)L form the basis in the
module in question.

Proof. Let C : Q × T (r,s)  T (p,q)L be anMfm-natural operator of order
k. For any classical linear connection ∇ on M and any tensor field t of type
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(r, s) on M we can write

A(∇, t) =
∑

a

λa(∇, t)F a(∇),

where λa(∇, t) : LM → R are the uniquely determined maps.
Because of the invariance od A with respect to Mfm-maps, λa : Q ×

T (r,s)  T (0,0)L areMfm-natural operators. �

4. The infinite order case. For k = ∞, the results are similar. We
need only replace µ : Sk × Jk

0 TRm → R by smooth µ : S∞ × J∞0 TRm →
R. The smoothness means that µ is locally factorized by smooth maps
Sk × Jk

0 TRm → R with finite k. In the proof of (new) Proposition 1, the
additional assumption on µ is obtained by the non-linear Petree theorem, [2].
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