
ANNALES
UNIVERS ITAT I S MARIAE CUR IE - SKŁODOWSKA

LUBL IN – POLONIA

VOL. LX, 2006 SECTIO A 23–30

LEOPOLD KOCZAN and PAWEŁ ZAPRAWA

Covering domains for the class
of typically real odd functions

Abstract. A set
⋃

f∈T (2) f(D) is called the covering domain for the class
T (2) of typically real odd functions over some fixed set D. This set is denoted
by LT (2)(D). We find sets LT (2)(∆r) and LT (2)(H), where ∆r = {z ∈ C :
|z| < r}, r ∈ (0, 1) and H =

{
z ∈ ∆ :

∣∣1 + z2
∣∣ > 2|z|

}
is one of the domains

of univalence for T (2).

Let A denote the class of all functions that are analytic in the unit disk
∆ = {z ∈ C : |z| < 1} and normalized by f(0) = f ′(0)− 1 = 0. For a given
domain D ⊂ ∆, a set

⋃
f∈A f(D) is called the covering domain for the class

A over the set D, and is denoted by LA(D). This generalized definition was
introduced in [2]. Domains LA(D) are characterized by the following, easy
to prove, properties
1. if all functions of the class A are univalent in ∆ and f ∈ A ⇔
e−iϕf(zeiϕ) ∈ A for arbitrary ϕ ∈ R, then LA(∆r) = ∆M(r), where
M(r) = max{|f(z)| : f ∈ A, z ∈ ∂∆r};

2. if all functions of the class A have real coefficients, and D is sym-
metric with respect to the real axis, then LA(D) is symmetric with
respect to the real axis;

3. if all functions of the class A have real coefficients, f ∈ A ⇔
−f(−z) ∈ A, and D is symmetric with respect to both axes of
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the complex plane, then LA(D) is symmetric with respect to both
axes;

4. if D1 ⊂ D2, then LA(D1) ⊂ LA(D2);
5. if A1 ⊂ A2 ⊂ A, then LA1(D) ⊂ LA2(D).

In this paper we derive some covering domains for the class T (2) consisting
of typically real odd functions. Sets ∆r = {z ∈ C : |z| < r}, r ∈ (0, 1) and
H =

{
z ∈ ∆ :

∣∣1 + z2
∣∣ > 2|z|

}
are considered. Some related results for the

class T of typically real functions the reader can find in [4].
Recall that

T (2) = {f ∈ A : Im z Im f(z) ≥ 0, f(−z) = −f(z) for z ∈ ∆}.

It is known (see for example [2]) that

f ∈ T (2) ⇔ f(z) ≡
∫ 1

0

z(1 + z2)
(1 + z2)2 − 4z2t

dµ(t),

where µ is a probability measure on [0, 1].
For a given r ∈ (0, 1) we can determine LT (2)(∆r) considering

(1) max
{
|f(z)| : f ∈ T (2), Arg f(z) = α, |z| = r

}
,

with fixed α ∈ [0, 2π]. It is easy to observe that for z ∈ ∆ \ {0} the set{
f(z) : f ∈ T (2)

}
coincides with a segment of the disk, whose boundary

contains the origin, in case Re z Im z 6= 0, and coincides with a line segment
included in one of the axes of the complex plane, in case Re z Im z = 0. In
both cases 0 /∈ {f(z) : f ∈ T (2)}. Therefore, the maximum (1) is equal to

(2) max{|ft(z)| : t ∈ [0, 1], Arg f(z) = α, |z| = r},

where the functions ft are extreme points of T (2), i.e.

ft(z) =
z(1 + z2)

(1 + z2)2 − 4z2t
, z ∈ ∆, t ∈ [0, 1].

Throughout the paper we write 2m = r2 + 1/r2, m > 1. We also use the
notation: ∂D for the boundary of D, intD for the interior of D, clD for
the closure of D.
The following properties of ft will be used to calculate the maximum (2).

Lemma 1. Let 0 ≤ t ≤ 1. Then

1. Re
zf ′t(z)
ft(z)

≥ 0 for |z| ≤
√
t+ 1−

√
t;

2. Re
zf ′t(z)
ft(z)

≥ 0 for
√
t+ 1−

√
t < |z| < 1

and cos(2 arg z) ≥ 1
2

(
4t− 1

|z|2 − |z|
2
)
.
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Proof. Observe that Re
zf ′t(z)
ft(z)

≥ 0 if and only if

(m+ cos 2ϕ)2 − 4t2 + 4t− 4t cos2 2ϕ ≥ 0,

where r = |z|, ϕ = arg z. Let −∞ < α < β < +∞. It is obvious that any
real polynomial h of at most second degree such that h(α) ≥ 0, h(β) ≥ 0
and h′(α) ≥ 0 or h′(β) ≤ 0 is nonnegative on [α, β]. Put x = cos 2ϕ and let
h(x) ≡ (m+ x)2 − 4t2 + 4t− 4tx2.
1. In the case ρ ≤ (

√
t+ 1 −

√
t)2 we get m ≥ 1 + 2t, h(−1) ≥ 0,

h(1) ≥ 4m > 4, h′(−1) = 2(m + 4t − 1) ≥ 12t ≥ 0, so h(x) ≥ 0 for
−1 ≤ x ≤ 1.
2. If (

√
t+ 1−

√
t)2 < ρ < 1 then 1 < m < 1+2t, |2t−m| < 1, h(2t−m) ≥

8t(1− t) ≥ 0, h(1) > 4(1− t2) ≥ 0, 2th′(1)−h′(2t−m) = −4tm ≤ 0. Hence
h′(2t−m) ≥ 0 or h′(1) ≤ 0, i.e. h(x) ≥ 0 for 2t−m ≤ x ≤ 1. The proof is
complete. �

Lemma 2. Let 0 ≤ t ≤ 1. Then
1. ft is univalent in ∆r if r ∈ (0,

√
t+ 1−

√
t], and is nonunivalent in

∆r if r ∈ (
√
t+ 1−

√
t, 1);

2. ft(∆r) is a starlike domain for each r ∈ (0, 1);
3. the boundary of ft(∆r) lying in the first quadrant of the complex
plane is of the form
(i) {ft(reiϕ) : ϕ ∈ [0, π2 ]} for r ∈ (0,

√
t+ 1−

√
t],

(ii) {ft(reiϕ) : ϕ ∈ [0, ϕ(t, r)]} for r ∈ (
√
t+ 1−

√
t, 1),

where ϕ(t, r) = 1
2 arccos (2t−m).

Proof. By Lemma 1, each ft, t ∈ [0, 1], is univalent and starlike in ∆R,
R =

√
t+ 1−

√
t. Hence ∂ft(∆r) = {ft(reiϕ) : ϕ ∈ [0, 2π)} for 0 < r ≤ R.

Let r ∈ (R, 1). Each function ft is not univalent in∆r because f ′t(iR) = 0.
Observe that the set{

z ∈ C : |z| = r, cos(2 arg z) ≥ 1
2

(
4t− 1

|z|2
− |z|2

)}
consists of two arcs Γ1, Γ2, where

Γ1 =
{
reiϕ : ϕ ∈ [−ϕ(t, r), ϕ(t, r)]

}
,

Γ2 =
{
reiϕ : ϕ ∈ [π − ϕ(t, r), π + ϕ(t, r)]

}
.

Moreover, ft(Γ1∪Γ2) is a closed curve without intersection points. Combin-
ing it with Lemma 1 we get the point (ii) of 3 and starlikeness of ft(∆r). �

Lemma 3. For a fixed r ∈ (0, 1),
1. |f0(reiϕ)| is an increasing function of ϕ ∈ [0, π2 ],
2. |f1(reiϕ)| is a decreasing function of ϕ ∈ [0, π2 ].
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Proof. Observe that |f(reiϕ)| is an increasing function of ϕ ∈ [0, π2 ] if

Re
ireiϕf ′(reiϕ)
f(reiϕ)

≥ 0, and is a decreasing function if Re
ireiϕf ′(reiϕ)
f(reiϕ)

≤ 0.

For this reason and from equalities

Im z2 · Im zf ′0(z)
f0(z)

=
−2(Im z2)2

|1 + z2|2

and

Im z2 · Im zf ′1(z)
f1(z)

=
2(Im z2)2(2 + |1 + z2|2 + 2|z|4)

|1− z4|2
,

the assertion follows. �

With fixed r ∈ (0, 1) let us denote

(3)
γ0 : ϕ −→ f0(reiϕ), ϕ ∈ R,
γ1 : ϕ −→ f1(reiϕ), ϕ ∈ R.

Lemma 4. The boundary of f0(∆r) ∪ f1(∆r) in the first quadrant of the
complex plane coincides with
1. γ1([0, ϕ1]) ∪ γ0([ϕ0,

π
2 ]) for r ∈

(
0, 1

2(
√

5− 1)
]
,

2. γ1([0, π2 ]) for r ∈
(

1
2(
√

5− 1), 1
)
,

where

(4) ϕ1 =
1
2

arccos
(

1
2

(
m−

√
m2 + 4

))
, ϕ0 = π − 3ϕ1.

Proof. Let z0 = reiϕ, z1 = reiφ and ϕ, φ ∈ [0, π2 ]. In order to describe
the common points of γ0([0, π2 ]) and γ1([0, π2 ]) we shall solve the equation
f0(z0) = f1(z1), |z0| = |z1| = r, which is equivalent to

(5) z0 +
1
z0

= z1 +
1
z1
− 4
z1 + 1

z1

,

and hence to

(6)

cosϕ =
(
1− 2

m+cos 2φ

)
cosφ

sinϕ =
(
1 + 2

m+cos 2φ

)
sinφ.

From this system we obtain cos2 2φ + m cos 2φ − 1 = 0. Thus cos 2φ =
1
2

(
−m+

√
m2 + 4

)
∈

(
0, 1

2(
√

5− 1)
)
and cos 3φ = − cosϕ. The solution of

(6) is {
φ = 1

2 arccos
(

1
2

(
m−

√
m2 + 4

))
,

ϕ = π − 3φ.

Observe that ϕ ∈ [0, π2 ] if and only if φ ∈ [π6 ,
π
3 ], and consequently, if

| cos 2φ| ≤ 1
2 . This inequality holds only for m ≥ 3

2 and hence for r ∈
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0, 1

2(
√

5− 1)
]
. In the case r ∈

(
1
2(
√

5− 1), 1
)
the system (6) has no solu-

tions for ϕ, φ ∈ [0, π2 ].

Additionally, if r ∈ (0, 1
2(
√

5 − 1)] then f0(r) = r
1+r2

< r(1+r2)
(1−r2)2

= f1(r)

and f0(ir)/i = r
1−r2 >

r(1−r2)
(1+r2)2

= f1(ir)/i. �

Figure 1. LT (2)(∆r) for r = 0.3 and r = 0.7.

Theorem 1.

LT (2)(∆r) = f0(∆r) ∪ f1(∆r) for r ∈
(
0, 1

2(
√

5− 1)
)
,

LT (2)(∆r) = f1(∆r) for r ∈
[

1
2(
√

5− 1), 1
)
.

Proof. Let r ∈ (0, 1) be fixed and let L denote the set
⋃

0≤t≤1 ft(∆r).
According to Lemma 1 and Lemma 2, each set ft(∆r) is starlike with respect
to 0, hence L is starlike with respect to the origin. We know that the maxima
(1) and (2) are equal. For this reason we shall consider the function

(7) F (t, ϕ) ≡ ft(reiϕ), with t ∈ [0, 1] and ϕ ∈ R.

The boundary of L is contained in the set F ([0, 1]×R).
Observe that if (t0, ϕ0) ∈ int([0, 1] × R) and the jacobian JF (t0, ϕ0) is
nonzero, then F (t0, ϕ0) ∈ intL. Therefore the set ∂L is included in the set
{F (t, ϕ) : (t, ϕ) ∈ B}, where

B = {(t, ϕ) : JF (t, ϕ) = 0 or t(1− t) = 0, ϕ ∈ R}.

The equation JF (t, ϕ) = 0, i.e.∣∣∣∣∣∂ ReF
∂t

∂ ReF
∂ϕ

∂ ImF
∂t

∂ ImF
∂ϕ

∣∣∣∣∣ (t, ϕ) = 0
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is equivalent to

(8) Im
(
∂F

∂t
· ∂F
∂ϕ

)
(t, ϕ) = 0.

Since
∂F

∂t
=

4r3e3iϕ(1 + r2e2iϕ)
[(1 + r2e2iϕ)2 − 4tr2e2iϕ]2

,

∂F

∂ϕ
=
ireiϕ[(1 + r2e2iϕ)2 + 4tr2e2iϕ]

[(1 + r2e2iϕ)2 − 4tr2e2iϕ]2
,

we can rewrite (8) as follows

Re
{
r2e−2iϕ

(
1 + r2e−2iϕ

) (
1− r2e2iϕ

) [(
1 + r2e2iϕ

)2 + 4tr2e2iϕ
]}

= 0.

We eventually obtain

(9) 2t+ (m+ cos 2ϕ) cos 2ϕ = 0.

The points (t, ϕ) ∈ [0, 1]×R satisfy (9) only if λ(m) ≤ cos 2ϕ ≤ 0, where

λ(m) =

{
−1 for m ≤ 3,√
m2−8−m

2 for m > 3.
Consider the curve

(10) γ : ϕ −→ F

(
−1

2
(m+ cos 2ϕ) cos 2ϕ,ϕ

)
, ϕ ∈ R

and the curves γ0 and γ1 defined by (3).
We claim that γ({ϕ ∈ R : λ(m) ≤ cos 2ϕ ≤ 0}) is included in the closed
domain bounded by γ0(R), i.e. in f0(∆r).
Indeed, we have

1/F
(
−1

2(m+ cos 2ϕ) cos 2ϕ,ϕ
)

=
1
reiϕ

+ reiϕ +
2(m+ cos 2ϕ) cos 2ϕ

1
reiϕ + reiϕ

= 2
(

1
r

+ r

)
cos3 ϕ− 2i

(
1
r
− r

)
sin3 ϕ,

i.e. (10) restricted to [0, 2π) is a Jordan curve, and

1/F (0, ψ) =
1
reiψ

+ reiψ =
(

1
r

+ r

)
cosψ − i

(
1
r
− r

)
sinψ.

The equation F (0, ψ) = F
(
−1

2(m+ cos 2ϕ) cos 2ϕ,ϕ
)
is equivalent to the

system {
2 cos3 ϕ = cosψ
2 sin3 ϕ = sinψ.

It is easy to check that the only solution of this system for ϕ,ψ ∈ [0, π2 ] is
ϕ = ψ = π

4 . It means that the sets γ([0,
π
2 ]) and γ0([0, π2 ]) have only one

common point.
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Moreover,

γ(0) =
1

2(1
r + r)

<
1

1
r + r

= γ0(0)

and

γ(π2 )/i =
1

2
(

1
r − r

) < 1
1
r − r

= γ0(π2 )/i.

Therefore γ([0, π2 ]) ⊂ f0(∆r) and, by symmetry of γ(R) with respect to both
axes of the complex plane, we have γ(R) ⊂ f0(∆r). Consequently, ∂L ⊂
γ0(R)∪γ1(R). The assertion of the theorem follows now from Lemma 4. �

From Theorem 1 and Lemma 4 it immediately follows

Corollary 1. If r ∈
(
0, 1

2(
√

5− 1)
)
then the boundary of LT (2)(∆r) lying in

the first quadrant of the complex plane coincides with γ1([0, ϕ1])∪γ0([ϕ0,
π
2 ]),

where ϕ1 and ϕ0 are defined by (4).

We conclude from Theorem 1 that for f ∈ T (2) and |z| = r the following
sharp bound holds:

| Im f(z)| ≤

{
maxz∈∂∆r {Im f0(z), Im f1(z)} for r ∈

(
0, 1

2(
√

5− 1)
)
,

maxz∈∂∆r Im f1(z) for r ∈
[

1
2(
√

5− 1), 1
)
.

Denote x = (1
r + r)2,

g(r) =
(

1
r
−r

)
(2− x+

√
2x2 + 4)(2x− 2 +

√
2x2 + 4)2

√
3x− 2

√
2x2 + 4

16x2(x− 4)2
,

and
h(x) = x5 − 124x4 + 4064x3 − 21632x2 + 256x+ 5120.

A simple but extensive calculation leads to

Corollary 2. For f ∈ T (2) and r ∈ (0, 1) we have∣∣Im f
(
reiϕ

)∣∣ ≤ {
r

1−r2 for r ∈ (0, r∗),
g(r) for r ∈ [r∗, 1),

where r∗ = 0.483 . . . is the only solution of the equation h
(
(1
r + r)2

)
= 0 in

(
√

2− 1, 1).

It is interesting to describe the covering domain for the class T (2) over
the set H, where H =

{
z ∈ ∆ :

∣∣1 + z2
∣∣ > 2|z|

}
. The lens-shaped set H is

the domain of univalence for T (2) ([3], see also [1]). We apply this property
of H in the proof of the following theorem.

Theorem 2. LT (2)(H) = f0(H) ∪ f1(H).
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Proof. Observe that f1(H) = C \
{
i% : % ∈

(
−∞,−1

4

]
∪

[
1
4 ,∞

)}
. The set

H is symmetric with respect to both axes as well as each set f(H) for all
f ∈ T (2). From this and from univalence of each f ∈ T (2) in H we conclude
that for z ∈ H there is Re f(z) = 0 ⇔ Re z = 0.
For this reason it suffices to calculate max

{
1
i f(ir0) : f ∈ T (2)

}
, r0 =√

2− 1. We have

max
{

1
i
f(ir0) : f ∈ T (2)

}
= max

{
r0(1− r0

2)
(1− r02)2 + 4r02t

: t ∈ [0, 1]
}

=
r0

1− r02
=

1
2

=
1
i
f0(ir0) .

Hence the set {i% : % ≥ 1
2} is disjoint from LT (2)(H). This fact and the

symmetry of LT (2)(H) with respect to the real axis completes the proof. �

We get from Theorem 2

Corollary 3. LT (2)(H) = C \
{
i% : % ∈

(
−∞,−1

2

]
∪

[
1
2 ,∞

)}
.

Corollary 4. For arbitrary domain D ⊃ cl(H)\{−1, 1} we have LT (2)(D) =
C.
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