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Optimal investment and consumption
in the presence of default on a financial market

driven by a Lévy noise

Abstract. In this paper we investigate a problem of optimal investment and
consumption. We consider a financial market consisting of a risk-free asset
with a deterministic force of interest and a risky asset whose price is driven by
a time-inhomogeneous Lévy process. We also take into account a possibility
of default, which is an unpredictable event of exiting a financial market, and
we model a default intensity as a diffusion process. The classical verification
theorem for the Hamilton–Jacobi–Bellman equation is proved and explicit
results are derived for HARA utility functions.

1. Introduction. When dealing with investment and consumption deci-
sions one should take into account two types of risks. The first one is
market risk which arises due to unpredictable changes in asset prices. The
second is timing risk which arises due to the uncertainty over an investment
time-horizon. In most cases, an investor when entering a financial market
does not know with certainty the time of exiting this market. Some events
may occur, which are commonly called defaults, which can force an investor
to leave a market liquidating or not his/her assets. What is more important,
a rate of arrival of a default event at future dates, which is called a default
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intensity, is also unknown and should not be treated deterministically but
in a stochastic way. An example of such default event is a death of an agent.
In this paper we are dealing with an optimal investment and consumption
problem taking into account both types of risks together with the uncer-
tainty over a default intensity. A closely-related problem was considered by
Blanchet-Scalliet et al. [4] on a Black–Scholes market. In this work, a de-
terministic distribution function of default time was assumed and dynamic
programming, as well as martingale methods were applied. Explicit results
were derived in the case of HARA utility functions for two separate prob-
lems of an optimal investment when maximizing an expected utility of a
wealth at default time and an optimal consumption/investment when max-
imizing a total expected utility of consumption rates up to default without
a bequest motive. They also tried to take into account the uncertainty of fu-
ture default intensities and considered a stochastic density process of default
time, correlated with a financial market, modelled as a geometric Brownian
motion. In this particular case they were able to derive the Hamilton–
Jacobi–Bellman equation and found a solution for HARA utility functions.
Also worth mentioning is another paper of Blanchet-Scalliet et al. [5] in
which they developed the asset pricing theory with uncertain time-horizon.
Recently, Øksendal [15] solved an optimal consumption problem with a
bequest motive in a financial market driven by a Lévy noise for an insider
in the case of F∞-measurable default time. It was also showed that an
optimal consumption/investment problem could be split into a consumption
problem and an investment problem which was solved in the same setting
in Di Nunno et al. [11]. In both papers logarithmic utility was applied.
Bouchard and Pham [6] studied a wealth-path dependent utility maxi-
mization problem in a general incomplete semimartingale model by applying
martingale duality methods. A special case is an optimal investment prob-
lem of maximizing an expected utility of a wealth at a random date by
taking into account a stochastic density process of default time. For an op-
timal investment problem with a certain terminal time in a financial market
driven by a Lévy process we refer the reader to Choulli and Hurd [8].
This paper is structured as follows. In Section 2 we introduce a model
of a financial market together with a default intensity process and default
time. An optimal investment and consumption problem is discussed in
Section 3. In Section 4 we derive the Hamilton–Jacobi–Bellman equation
for our optimization problem and prove the verification theorem. In the case
of power and logarithmic utility preferences, classical solutions are found.
The insurance applications of our model are presented in Section 5.

2. The model. Let us consider a probability space (Ω,F ,P) with a filtra-
tion F = (Ft)0≤t≤T , where T is fixed, finite time horizon. The filtration sat-
isfies the usual hypotheses of completeness (F0 contains all sets of P-measure
zero) and right continuity (Ft = Ft+). The filtration F = (Ft)0≤t≤T consists
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of three subfiltrations. We set Ft = FF
t ∨ Fτ

t ∨ FD
t for all t ∈ [0, T ], where

FF
t contains information about a financial market, Fτ

t contains information
whether a default event in a financial market has already occurred or not,
and FD

t contains information about a default intensity. We assume that
the subfiltrations FF

t and (Fτ
t ,FD

t ) are independent. In the following sub-
sections we introduce a financial market and a stochastic default intensity
process.

2.1. The financial market. We consider a financial market consisting of
two assets. One of the assets is risk-free (a bank account) and its price
(B(t), 0 ≤ t ≤ T ) is described by an ordinary differential equation

(2.1)
dB(t)
B(t)

= r(t)dt, B(0) = 1,

where r(t) denotes a rate of interest. The second tradeable financial instru-
ment is a risky asset (a stock) and its price (S(t), 0 ≤ t ≤ T ) is modelled
as a geometric Lévy process. The dynamics of the stock price is given by a
stochastic differential equation

(2.2)
dS(t)
S(t−)

= µ(t)dt+ ξ(t)dL(t), S(0) = s0 > 0,

where µ(t) and ξ(t) denote a drift and a volatility, (L(t), 0 ≤ t ≤ T ) denotes
a zero-mean time-inhomogeneous Lévy process (an additive process), FF

t -
adapted with càdlàg sample paths (continuous on the right and having limits
on the left).
Let us recall the definition of an additive process.

Definition 2.1. A stochastic process (L(t))t≥0 is an additive process if it
has the following properties:
1. L(0) = 0 (a.s.),
2. (L(t))t≥0 has independent increments,
3. (L(t))t≥0 is stochastically continuous,

∀ε > 0, lim
t→s

P(|L(t)− L(s)| > ε) = 0.

The zero-mean additive process (L(t), 0 ≤ t ≤ T ) is assumed to satisfy
the Lévy–Itô decomposition

(2.3) L(t) =
∫ t

0
σ(s)dW (s) +

∫
(0,t]

∫
R
z
(
M(ds× dz)− νs(dz)ds

)
,

where (W (t), 0 ≤ t ≤ T ) is a P-Brownian motion and M((s, t] × A) =
#{s < u ≤ t : (L(u) − L(u−)) ∈ A} is a Poisson random measure,
independent of the Brownian motion, with a time-inhomogeneous, deter-
ministic intensity measure νt(dz)dt (a compensator). Let us recall that
M̃((s, t]×A) = M((s, t]×A)−

∫ t
s νu(A)du is a martingale-valued measure,
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that is M̃((s, t]×A) is a (P,FF )-martingale for all t ∈ (s, T ] and all Borel sets
A ∈ B(R− {0}). For more information concerning additive processes, Lévy
processes and Poisson random measures we refer the reader to Applebaum
[1], Cont and Tankov [9] and Sato [17].
We make the following assumptions concerning the coefficients and the
intensity measure:

A1: r : [0, T ] → [0,∞), µ : [0, T ] → [0,∞), σ : [0, T ] → [0,∞) are
Lipschitz continuous functions,
A2: we set ξ(t) = 1 for all t ∈ [0, T ], this is no loss of generality as
the process

∫
(0,t] ξ(s)dL(s) is also additive and satisfies the Lévy–Itô

decomposition,
A3: (νt, 0 ≤ t ≤ T ) is a family of Lévy measures on (−1,∞), such that

inft∈[0,T ]4L(t) > −1,
∫ T
0

∫
z>−1 z

2νs(dz)ds <∞ and νt({0}) = 0 for
all t ∈ [0, T ],
A4: |νt(A)−νs(A)| ≤ p(A)|t−s| for all Borel sets, where p(·) is a Lévy
measure on (−1,∞), such that

∫
z>−1 z

2p(dz) <∞ and p({0}) = 0.

The stochastic differential equation (2.2) has the unique, positive and almost
surely finite solution, given explicitly by the Doléans–Dade exponential, see
Applebaum [1].
We refer the interested reader to Chan [7] for more properties of such
financial model. Alternatively, one can start with an exponential additive
process as a model of a stock price, see Cont and Tankov [9]. Doléans–
Dade exponential shows that these two approaches to price modelling are
equivalent.

2.2. The stochastic default intensity process and default time. We
apply a reduced-form model of default time, see for example Jeanblanc and
Rutkowski [13] or Bielecki and Rutkowski [3] for more information. We
assume that τ , which is the moment of default in the financial market, is
a positive random variable, a stopping time with respect to filtration Fτ

t ,
exponentially distributed with survival function

(2.4) P
(
τ > t|FD

t

)
= e−

∫ t
0 λ(s)ds,

where (λ(t), 0 ≤ t ≤ T ) is a default intensity process. The default inten-
sity is a stochastic process of diffusion type, which dynamics is given by a
stochastic differential equation

(2.5) dλ(t) = a(t, λ(t))dt+ b(t, λ(t))dW̄ (t), λ(0) = λ0 > 0,

where (W̄ (t), 0 ≤ t ≤ T ) is an FD
t -adapted P-Brownian motion, independent

of the Brownian motion (W (t), 0 ≤ t ≤ T ) and Poisson random measure
M((0, t]×A). One can associate a one-jump point-process (N(t), 0 ≤ t ≤ T )
with the random variable τ , and the process defined as N(t) = 1{t ≥ τ} is
called doubly stochastic with intensity λ or Cox process.
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We make the following assumptions concerning the stochastic default
intensity process:
B1: a : [0, T ]×(0,∞) → R, b : [0, T ]×(0,∞) → (0,∞) are continuous
functions, locally Lipschitz continuous in λ, uniformly in t,
B2: there exists a sequence (An)n∈N of bounded domains with Ān ⊆

(0,∞) and
⋃

n≥1An = (0,∞), each with a C2-boundary, such that
the functions a(t, λ) and b2(t, λ) are uniformly Lipschitz continuous
on [0, T ]× Ān,
B3: P(∀s∈[t,T ]λ(s) > 0|λ(t) = λ) = 1 and

sup
s∈[t,T ]

EP[|λ(s)|2|λ(t) = λ] <∞

for all starting points (t, λ) ∈ [0, T ]× (0,∞).
Under the assumptions B1 and B3 the default intensity process is nonex-
plosive on [t, T ] and there exists the unique strong solution to the stochastic
differential equation (2.5) for each starting point (t, λ) ∈ [0, T ]×(0,∞), such
that the mapping (t, λ, s) → λt,λ(s) is P-a.s continuous, see Kunita [14]. The
assumption B2 is required in the verification results.

3. Optimal investment and consumption problem. We assume that
an agent makes decisions based on his/her utility preferences and let u :
R → R denote the agent’s utility function. This utility function should be
increasing and concave as economic theory indicates. Let X(t), for 0≤ t≤T ,
denote the value of the agent’s wealth at time t arising from trading in the
financial market. The agent adopts the consumption strategy (c(t), 0 < t ≤
T ) and the investment strategy (π(t), 0 < t ≤ T ), where c(t) denotes the rate
of consumption at time t and π(t) denotes the fraction of the wealth invested
in the risky asset at time t. The remaining fraction of the available wealth,
1−π(t), is invested in the risk-free asset. The dynamics of the agent’s wealth
process (Xc,π(t), 0 ≤ t ≤ T ) is given by a stochastic differential equation

(3.1)
dXc,π(t) = π(t)Xc,π(t−)

(
µ(t)dt+ σ(t)dW (t) +

∫
z>−1

zM̃(dt× dz)
)

+Xc,π(t−)(1− π(t))r(t)dt− c(t)dt, X(0) = x0,

where x0 denotes the initial available wealth of the agent.
Let us introduce the set of admissible strategies for our problem.

Definition 3.1. The control (c(t), π(t), s < t ≤ T ) is an admissible on the
time interval (s, T ], (c, π) ∈ A(s, T ], if it satisfies the following assumptions:
(1) π : (s, T ] × Ω → [0, 1] and c : (s, T ] × Ω → [0,∞) are predictable
mappings with respect to filtration F,

(2) the stochastic differential equation (3.1) has the unique, strong and
positive solution on [s, T ] given the initial condition X(s) = x, for
all x ∈ (0,∞).
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We deal with the following optimization problem:

(3.2)

sup
(c,π)∈A(0,τ∧T ]

E
[∫ T

0
1{τ ≥ s}e−ρsu(c(s))ds

+ αe−ρτu(Xc,π(τ))1{τ ≤ T}

+ βe−ρTu(Xc,π(T ))1{τ > T}
]
,

where ρ ≥ 0 is a intertemporal agent’s discount factor and parameters α, β >
0 attach weights to utility at the default time τ and at the terminal time
T . The possibility of liquidating the assets even if the default occurs before
terminal time T is called in life-cycles models a bequest motive. In the view
of optimization criterium (3.2) the agent is trying to maximize the expected
total discounted utility of consumption rates up to the terminal time T or
up to the default time τ , whichever occurs first, and the discounted utility of
the wealth at the terminal time T or at the default time τ , whichever occurs
first. This problem is an extension of the well-known Merton problem.

4. The stochastic control problem. The investment/consumption prob-
lem stated in the previous section can be solved by applying stochastic con-
trol theory. The solution of the optimization problem (3.2), together with
the verification theorem is, to the best of our knowledge, the new one in the
financial literature.

4.1. Hamilton–Jacobi–Bellman equation. In this subsection we derive
the Hamilton–Jacobi–Bellman equation and prove the verification theorem.
In the next subsections, the classical solutions are found in the case of HARA
utility functions.
Let LF denote the integro-differential operator given by

(4.1)

Lc(t),π(t)
F φ(t, x) =

(
π(t)x(µ(t)− r(t)) + xr(t)− c(t)

)∂φ
∂x

(t, x)

+
1
2
π2(t)x2σ2(t)

∂2φ

∂x2
(t, x)

+
∫

z>−1

(
φ(t, x+ π(t)xz)− φ(t, x)− π(t)xz

∂φ

∂x
(t, x)

)
νt(dz),

and let LD denote the differential operator given by

(4.2) LDφ(t, λ) = a(t, λ)
∂φ

∂λ
(t, λ) +

1
2
b2(t, λ)

∂2φ

∂λ2
(t, λ).

These two operators are defined for functions φ such that Lφ are well-defined
pointwise and all derivatives appearing in Lφ exist and are continuous func-
tions.
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Let us define the optimal value function for the optimization problem:

(4.3)

V (t, x, λ) = sup
(c,π)∈A(t,τ∧T ]

E
[∫ T

t
1{τ ≥ s}e−ρsu(c(s))ds

+ αe−ρτu(Xc,π(τ))1{τ ≤ T}+ βe−ρTu(Xc,π(T ))1{τ > T}|

X(t) = x, λ(t) = λ,N(t) = 0
]
, 0 ≤ t ≤ T.

Let us denote the expectations E[·|X(t) = x, λ(t) = λ,N(t) = 0] in the
form Et,x,λ[·]. Below we prove the classical stochastic verification theorem.

Theorem 4.1. Let v ∈ C1,2,2([0, T )× (0,∞)× (0,∞))∩ C([0, T ]× (0,∞)×
(0,∞)) satisfies, for all (c, π) ∈ A(t, τ ∧ T ],

(4.4)
0 ≥ ∂v

∂t
(t, x, λ) + e−ρtu(c(t)) + Lc(t),π(t)

F v(t, x, λ) + LDv(t, x, λ)

+ λ
(
αe−ρtu(x)− v(t, x, λ)

)
,

(4.5) v(T, x, λ) = βe−ρTu(x),

(4.6)
Et,x,λ

[∫ T

t

∫
z≥1

1{τ ≥ s}
(
v(s,Xc,π(s−) + π(s)Xc,π(s−)z, λ(s))

− v(s,Xc,π(s−), λ(s))
)2
νs(dz)ds

]
<∞,

(4.7) sup
s∈[t,T ]

Et,x,λ
[(
|v(s,Xc,π(s), λ(s))|2 + |u(Xc,π(s))|2

)
1{τ ≥ s}

]
<∞,

and for all (t, x, λ) ∈ [0, T ]× (0,∞)× (0,∞). Then

(4.8) v(t, x, λ) ≥ V (t, x, λ), ∀(t, x, λ) ∈ [0, T ]× (0,∞)× (0,∞).

Moreover, if there exists an admissible feedback control (c̃, π̃) ∈ A(0, τ ∧ T ]
such that

(4.9)

0 =
∂v

∂t
(t,X c̃,π̃(t−), λ(t)) + e−ρtu(c̃(t))

+ Lc̃(t),π̃(t)
F v(t,X c̃,π̃(t−), λ(t)) + LDv(t,X c̃,π̃(t−), λ)

+ λ(t)
(
αe−ρtu(X c̃,π̃(t−))− v(t,X c̃,π̃(t−), λ)

)
,

holds P-a.s. for a.a. 0 < t ≤ T with respect to Lebesque measure, and

(4.10)
the family {v(T , X c̃,π̃(T ), λ(T ))}t<T ≤T is uniformly integrable

for all F-stopping times T ,
then

(4.11) v(t, x, λ) = V (t, x, λ), ∀(t, x, λ) ∈ [0, T ]× (0,∞)× (0,∞),

and (c̃, π̃) is the optimal strategy for the optimization problem (4.3).
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Proof. Let us fix t, 0 ≤ t ≤ T . Let us assume that an arbitrary admissible
control (c, π) ∈ A(t, τ ∧ T ] is applied and let v ∈ C1,2,2([0, T ) × (0,∞) ×
(0,∞))∩ C([0, T ]× (0,∞)× (0,∞)) denote a function which satisfies (4.4)–
(4.7). Notice that

(4.12)

Et,x,λ
[
αe−ρτu(Xc,π(τ))1{τ ≤ T}

+ βe−ρTu(Xc,π(T ))1{τ > T} − v(t, x, λ)
]

= Et,x,λ
[
αe−ρτu(Xc,π(τ))1{τ ≤ T}
+ βe−ρTu(Xc,π(T ))1{τ > T}
− v(τ ∧ T,Xc,π(τ ∧ T ), λ(τ ∧ T ))

+ v(τ ∧ T,Xc,π(τ ∧ T ), λ(τ ∧ T ))− v(t, x, λ)
]

= Et,x,λ
[(
αe−ρτu(Xc,π(τ))− v(τ,Xc,π(τ), λ(τ))

)
1{τ ≤ T}

]
+ Et,x,λ

[
v(τ ∧ T,Xc,π(τ ∧ T ), λ(τ ∧ T ))− v(t, x, λ)

]
.

Let us deal with the first factor in (4.12). We have

(4.13)

Et,x,λ
[(
αe−ρτu(Xc,π(τ))− v(τ,Xc,π(τ), λ(τ))

)
1{τ ≤ T}

]
= Et,x,λ

[(
αe−ρτu(Xc,π(τ−))

− v(τ,Xc,π(τ−), λ(τ))
)
1{τ ≤ T}

]
= Et,x,λ

[
Et,x,λ

[(
αe−ρτu(Xc,π(τ−))

− v(τ,Xc,π(τ−), λ(τ))
)
1{τ ≤ T}|FD

T

]]
= Et,x,λ

[∫ T

t
Et,x,λ

[(
αe−ρsu(Xc,π(s−))

− v(s,Xc,π(s−), λ(s))
)∣∣FD

T

]
λ(s)e−

∫ s
t λ(w)dwds

]
= Et,x,λ

[∫ T

t
Et,x,λ

[(
αe−ρsu(Xc,π(s−))

− v(s,Xc,π(s−), λ(s))
)
λ(s)1{τ ≥ s}|FD

T

]
ds

]
= Et,x,λ

[
Et,x,λ

[∫ T

t
1{τ ≥ s}λ(s)

(
αe−ρsu(Xc,π(s−))

− v(s,Xc,π(s−), λ(s))
)
ds|FD

T

]]
= Et,x,λ

[∫ T

t
1{τ ≥ s}λ(s)

(
αe−ρsu(Xc,π(s−))

− v(s,Xc,π(s−), λ(s))
)
ds

]
,
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where we have used:

1. the observation thatXc,π(τ)1{t < τ ≤ T} = Xc,π(τ−)1{t < τ ≤ T}
holds P-a.s.,

2. the property of conditional expectations,
3. the independence of the wealth process (Xc,π(t), 0 ≤ t ≤ T ) and the
random variable τ , conditioned on filtration FD

T ,
4. the distribution of the random variable τ conditioned on filtration
FD

T ,
5. Fubini theorem for conditional expectation, integrability is justified
by (4.7) and B3.

Let us now deal with the second factor in (4.12). Let us introduce the
sequence of stopping times

tn = inf{s ∈ (t, T ] : |X(s)− x|+ |λ(s)− λ| > θn}, θ > 0.

Clearly, t1 ≤ · · · ≤ tn → T holds P-a.s. Let us choose an arbitrary 0 < ε <
T − t. Applying Itô’s lemma we arrive at

(4.14)

Et,x,λ
[
v(τ∧tn∧(T − ε), Xc,π(τ ∧ tn∧(T − ε)), λ(τ∧tn∧(T − ε)))

− v(t, x, λ)
]

= Et,x,λ

[∫ T−ε

t
1{τ ≥ s, tn ≥ s}

(
∂v

∂t
(s,Xc,π(s−), λ(s))

+ Lc(s),π(s)
F v(s,Xπ

0 (s−), λ(s)) + LDv(s,Xc,π(s−), λ(s)
)
ds

]
,

where we have used the martingale property of the stochastic integrals,
resulting from the boundness of the integrands and the assumption (4.6).
The next steps are rather standard and we refer the reader to Øksendal,
Sulem [16] for details. Taking the limit n → ∞, ε → 0 in (4.14) we arrive
at

(4.15)

Et,x,λ
[
v(τ ∧ T,Xc,π(τ ∧ T ), λ(τ ∧ T ))− v(t, x, λ)

]
≤ −Et,x,λ

[∫ T

t
1{τ ≥ s}e−ρsu(c(s))ds

+
∫ T

t
1{τ ≥ s}λ(s)

(
αe−ρsu(Xc,π(s−))

− v(s,Xπ(s−), λ(s))
)
ds

]
,

which in combination with (4.13) proves (4.8). In order to prove (4.11) one
should apply the control (c̃, π̃) on (t, τ ∧ T ]. �

In the next two subsections, the solutions of the derived Hamilton–Jacobi–
Bellman equation are found for power and logarithmic utility functions.
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4.2. Power utility functions. In this subsection we assume that the
agent applies a power utility function of the form u(x) = xγ

γ , γ ∈ (0, 1).
We postulate that the optimal value function for the problem (4.3) is given
by

(4.16) V (t, x, λ) = ψ(t, λ)
xγ

γ
, ∀(t, x, λ) ∈ [0, T ]× (0,∞)× (0,∞).

Substituting (4.16) into (4.4) we arrive at

(4.17)

0 =
xγ

γ

∂ψ

∂t
(t, λ)

+ sup
c(t)∈[0,∞)

{
e−ρt (c(t))

γ

γ
− xγ−1ψ(t, λ)c(t)

}
+ xγψ(t, λ)r(t)

+
xγ

γ
ψ(t, λ) sup

π(t)∈[0,1]

{
γπ(t)(µ(t)− r(t)) +

1
2
γ(γ − 1)π2(t)σ2(t)

+
∫

z>−1

(
(1 + π(t)z)γ − 1− γπ(t)z

)
νt(dz)

}
+
xγ

γ
LDψ(t, λ) +

xγ

γ
λ
(
α(t)e−ρt − ψ(t, λ)

)
.

This yields that π̃(t) the optimal investment strategy at time t is determined
by the point π which maximizes the concave function

(4.18)
F (π, t) = γπ(µ(t)− r(t)) +

1
2
γ(γ − 1)π2σ2(t)

+
∫

z>−1

(
(1 + πz)γ − 1− γπz

)
νt(dz).

This function has a unique maximum in the interval [0, 1]. The derived
optimal investment strategy is the same as in a classical investment problem
with a fixed investment time-horizon, see Choulli and Hurd [8], and it is not
affected by the uncertainty over time of exiting the market. However, the
optimal consumption rate is affected. This phenomena has been explained
by Blanchet-Scalliet et al. [4]. The optimal consumption rate is given by

(4.19) c̃(t) = e
− ρ

1−γ
t(ψ(t, λ))−

1
1−γ x,

where the function ψ(t, λ) solves the reaction-diffusion partial differential
equation

(4.20)
0 =

∂ψ

∂t
(t, λ) + LDψ(t, λ) +

(
(r(t) + F (π̃(t), t))γ − λ

)
ψ(t, λ)

+ (1− γ)e−
ρ

1−γ
t(ψ(t, λ))−

γ
1−γ + αe−ρtλ, ψ(T, λ) = βe−ρT .

We prove, following Becherer and Schweizer [2] that the equation (4.20) has
the unique solution of the class C1,2([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)).
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Lemma 4.1. The function F (π̃(t), t) : [0, T ] → R, defined in (4.18), is
Lipschitz continuous.

Proof. Let 0 ≤ s < t ≤ T . Notice that F (π̃(t), t) ≥ F (π̃(s), t) and
F (π̃(s), s) ≥ F (π̃(t), s). Then

F (π̃(s), t)− F (π̃(s), s) ≤ F (π̃(t), t)− F (π̃(s), s) ≤ F (π̃(t), t)− F (π̃(t), s).

We have

|F (π̃(s), t)− F (π̃(s), s)| ≤ γπ̃(s)|µ(t)− µ(s)|+ γπ̃(s)|r(t)− r(s)|

+
1
2
γ(1− γ)π̃2(s)|σ2(t)− σ2(s)|

+
∣∣∣∣∫

z>−1

(
(1 + π̃(s)z)γ − 1− γπ̃(s)z

)
(νt(dz)− νs(dz))

∣∣∣∣
≤ K|t− s|,

which follows from the assumed Lipschitz continuity of µ(t), r(t), σ(t) in
A1 and the condition A4 concerning the measure νt. Lipschitz continuity
of the right hand side is proved analogously. �

Lemma 4.2. Let us define the operator A on functions ϕ by

(4.21)

(Aϕ)(t, λ) = E
[
βe−ρT e

∫ T
t

(
(r(s)+F (π̃(s),s))γ−λ(s)

)
ds

+
∫ T

t

(
(1− γ)e−

ρ
1−γ

s(ϕ(s, λ(s))−
γ

1−γ

+ αe−ρsλ(s)
)
e
∫ s

t

(
(r(u)+F (π̃(u),u))γ−λ(u)

)
du

)
ds|λ(t) = λ

]
.

The operator A defines the mapping of continuous functions ϕ which are
bounded away from zero and bounded from above into itself and is a con-
traction with respect to the norm

(4.22) ‖ϕ‖ = sup
(t,λ)∈[0,T ]×(0,∞)

e−κ(T−t)|ϕ(t, λ)|,

for large κ <∞.

Proof. Notice that F (π̃(t), t) ≥ 0 and

(4.23)
Aϕ(t, λ) > E

[
βe−ρT e−

∫ T
t λ(s)ds+ αe−ρT

(
1− e−

∫ T
t λ(s)ds

)
|λ(t) = λ

]
≥ (α ∧ β)e−ρT > 0,

for an arbitrary positive function ϕ bounded away from zero. We have an
uniform lower bound, as well as uniform upper bound, and we can find κ
as in Proposition 2.1 of Becherer and Schweizer [2], to which we refer the
reader for details. �
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Theorem 4.2. The reaction-diffusion partial differential equation (4.20)
has the unique solution of class C1,2([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)),
which is bounded away from zero and bounded from above, given by the fixed
point of the operator A from Lemma 4.2.

Proof. The proof of Proposition 2.3 from Becherer and Schweizer [2] can
also be applied in our setting. The difference is that our solution ψ is
approximated by the sequence of bounded away from zero and bounded
from above functions (ϕ)n = (Aϕ)n−1 if we only choose ϕ0 bounded away
from zero and locally Hölder continuous in (t, λ). �

4.3. Logarithmic utility functions. In this subsection we assume that
the agent applies a logarithmic utility function of the form u(x) = log x.
We postulate that the optimal value function for the problem (4.3) is given
by

(4.24) V (t, x, λ) = f(t, λ) log x+g(t, λ),∀(t, x, λ) ∈ [0, T ]×(0,∞)×(0,∞).

Substituting (4.24) into (4.4) we arrive at

(4.25)

0 = log x
∂f

∂t
(t, λ) +

∂g

∂t
(t, λ) + sup

c(t)∈[0,∞)

{
e−ρt log c(t)− f(t, λ)

c(t)
x

}
+ f(t, λ)r(t) + f(t, λ) sup

π(t)∈[0,1]

{
π(t)(µ(t)− r(t))− 1

2
π2(t)σ2(t)

+
∫

z>−1

(
log(1 + π(t)z)− π(t)z

)
νt(dz)

}
+ log xLDf(t, λ) + LDg(t, λ)

+ λ(αe−ρt log x− f(t, λ) log x− g(t, λ)).

This yields that π̃(t) the optimal investment strategy at time t is determined
by the point π which maximizes the concave function

(4.26)
G(π, t) = π(t)(µ(t)− r(t))− 1

2
π2(t)σ2(t)

+
∫

z>−1

(
log(1 + π(t)z)− π(t)z

)
νt(dz).

Again, it is not affected by the uncertainty over exit time. The function
G(π, t) has the unique maximum in the interval [0, 1], see Choulli and Hurd
[8]. The optimal consumption rate is given by

(4.27) c̃(t) = e−ρt x

f(t, λ)
,

where the function f(t, λ) solves the partial differential equation

(4.28)
∂f

∂t
(t, λ)+LDf(t, λ)−λf(t, λ)+ e−ρt(αλ+1) = 0, f(T, λ) = βe−ρT
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Applying the Theorem 1 from Heath and Schweizer [12] we conclude that
this equation has the unique solution of the class C1,2([0, T ) × (0,∞)) ∩
C([0, T ]× (0,∞)) which has the probabilistic representation given by Feyn-
man–Kac formula

(4.29)

f(t, λ) = E
[
βe−ρT e−

∫ T
t λ(s)ds

+
∫ T

t
e−ρs(αλ(s) + 1)e−

∫ s
t λ(u)duds|λ(t) = λ

]
.

Notice that in the case of a logarithmic utility function the rate of wealth
consumed by an agent does not depend on the financial market, in contrast
to a power utility function. For both HARA utility functions the relative
consumption rate is bounded from above which means that even in the case
of increasing default intensities the agent is not consuming all his wealth.
This is due to the inclusion of the bequest motive. Clearly, for the logarith-
mic utility we have

(4.30)
f(t, λ) > E

[
βe−ρT e−

∫ T
t λ(s)ds + αe−ρT

(
1− e−

∫ T
t λ(s)ds

)
|λ(t) = λ

]
≥ (α ∧ β)e−ρT > 0.

Notice that for α = β we have the following representation

(4.31) f(t, λ) = E
[
αe−ρ(τ∧T ) +

∫ τ∧T

t
e−ρsds|λ(t) = λ, τ > t

]
,

which coincides with the result from Øksendal [1].
The function g(t, λ) satisfies the partial differential equation

(4.32)
∂g

∂t
(t, λ) + LDg(t, λ)− λg(t, λ) + f(t, λ)(r(t) +G(π̃(t), t))

− e−ρt(log f(t, λ) + ρt+ 1) = 0, g(T, λ) = 0.

One can show that the function G(π̃(t), t) is Lipschitz continuous, in the
same way as in Lemma 4.1, and that the function f(t, λ) is locally Hölder
continuous in (t, λ), see Becherer and Schweizer [2]. Applying again the
Theorem 1 from Heath and Schweizer we conclude that the equation (4.32)
has the unique solution of the class C1,2([0, T )× (0,∞))∩C([0, T ]× (0,∞)).
Finally, let us consider the agent’s wealth process under the optimal in-
vestment/consumption strategy (X̃(t), 0 ≤ t ≤ T ). Its dynamic is given by
the stochastic differential equation

(4.33)

dX̃(t)
X̃(t−)

=
(
π̃(t)(µ(t)− r(t)) + r(t)− %(t, λ(t))

)
dt+ π̃(t)σ(t)dW (t)

+ π̃(t)
∫

z>−1
zM̃(dt× dz), X(0) = x0,
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where %(t, λ(t)) is the relative consumption rate corresponding to a power
or a logarithmic utility. The stochastic differential equation (4.33) has the
solution given by Doléans–Dade exponential, see Applebaum [1]

(4.34)

X̃(t) = x0 exp
{ ∫ t

0

(
π̃(s)(µ(s)− r(s)) + r(s)

− %(s, λ(s))− 1
2
π̃2(s)σ2(s)

)
ds+

∫ t

0
π̃(s)σ(s)dW (s)

+
∫ t

0

∫
z>−1

log(1 + π̃(s)z)M̃(ds× dz)

+
∫ t

0

∫
z>−1

(
log(1 + π̃(s)z)− π̃(s)z

)
νs(dz)ds

}
.

We left it to the reader to check that the assumptions of Theorem 4.1 are
satisfied for power and logarithmic utility functions.

5. Insurance applications. In our setting the default time is independent
of the financial market. This implies that the default in the financial market
is due to the appearance of some market-independent event. It might be
too strong assumption in many financial applications. However, our main
motivation for this paper comes from life and pension insurance. In this case
the default intensity process is the mortality intensity process of an insured
person and the assumption of the independence of person’s life-time and
the financial market clearly holds true.
We refer the reader to Delong [10], where indifference pricing of a life
policy is concerned with the presence of systematic mortality risk. This
involves maximization of the expected utility of the insurer’s wealth at the
terminal time or at the moment of the death of the insured person, whichever
occurs first. The classical solutions are found for exponential and quadratic
utility functions.
In the next paper, we are going to deal with some pension problem,
in which a pensioner solves an investment/consumption problem, apply-
ing subjective mortality intensities reflecting his/her current health status,
whereas an insurer, when calculating the cost of annuity, uses objective
mortality intensities based on its portfolio of pensioner. This is based on
the results from this paper.

References
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