ANNALES
UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
LUBLIN - POLONIA
VOL. LXI, 2007

PAWEも SOBOLEWSKI

Inequalities for Bergman spaces

Abstract

In this paper we prove an inequality for weighted Bergman spaces $A_{\alpha}^{p}, 0<p<\infty,-1<\alpha<\infty$, that corresponds to Hardy-Littlewood inequality for Hardy spaces. We give also a necessary and sufficient condition for an analytic function f in \mathbb{D} to belong to A_{α}^{p}.

1. Introduction and statement of results. Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C}. For $0<p<\infty$ the Hardy space H^{p} consists of analytic functions f in \mathbb{D} such that

$$
\|f\|_{H^{p}}=\sup _{0<r<1} M_{p}(r, f)<\infty,
$$

where

$$
M_{p}(r, f)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}} .
$$

For $-1<\alpha<\infty$ and $0<p<\infty$ the weighted Bergman space A_{α}^{p} consists of analytic functions f in \mathbb{D} such that

$$
\|\left. f\right|_{A_{\alpha}^{p}} ^{p}=\int_{\mathbb{D}}|f(z)|^{p} d A_{\alpha}(z)<\infty,
$$

2000 Mathematics Subject Classification. 30H05.
Key words and phrases. Bergman spaces, Hardy-Littlewood inequality for H^{p} spaces, Littlewood and Paley inequality for H^{p}, integral mean.
where

$$
d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z)
$$

and $d A(z)$ is the area measure on \mathbb{D} normalized so that $A(\mathbb{D})=1$.
In this paper we obtain some inequalities for Bergman spaces that correspond to the inequalities for Hardy spaces. In the proof of Theorem 2 we use the general method for translating the known equalities for H^{p} spaces to Bergman spaces version described in [9]. We first recall the HardyLittlewood inequality for H^{p} spaces.

Theorem HL. Suppose that $0<p<q \leq \infty, \beta=\frac{1}{p}-\frac{1}{q}, l \geq q$. Then there is a positive constant C such that

$$
\int_{0}^{1}(1-r)^{l \beta-1} M_{q}^{l}(r, f) d r \leq C\|f\|_{H^{p}}^{l}
$$

Here we prove the following theorem for Bergman spaces.
Theorem 1. Suppose that $0<p<q \leq \infty, l \geq p, \beta=\frac{2+\alpha}{p}-\frac{1}{q},-1<\alpha<$ ∞. Then there exists a positive constant C such that

$$
\int_{0}^{1}(1-r)^{l \beta-1} M_{q}^{l}(r, f) d r \leq C\|f\|_{A_{\alpha}^{p}}^{l}
$$

We note that Theorem 1 generalizes Lemma 5 in [8]. In 1988 D. Luecking proved the following generalization of the Littlewood and Paley inequality for Hardy spaces.

Theorem L. Let $0<p, s<+\infty$. Then there exists a constant $C=C(p, s)$ such that

$$
\begin{equation*}
\int_{\mathbb{D}}|f(z)|^{p-s}\left|f^{\prime}(z)\right|^{s}(1-|z|)^{s-1} d A(z) \leq C\|f\|_{H^{p}}^{p} \tag{1}
\end{equation*}
$$

for all $f \in H^{p}$ if and only if $2 \leq s<p+2$.
For Bergman spaces we get
Theorem 2. Let $0<p<\infty,-1<\alpha<\infty$ and $0 \leq s<p+2$. Then there exists a constant $C=C(p, s)$ such that

$$
\begin{equation*}
\int_{\mathbb{D}}|f(z)|^{p-s}\left|f^{\prime}(z)\right|^{s}(1-|z|)^{s} d A_{\alpha}(z) \leq C\|f\|_{A_{\alpha}^{p}}^{p} \tag{2}
\end{equation*}
$$

for all $f \in A_{\alpha}^{p}$.
The next theorem is, in some sense, the converse of Theorem 2.
Theorem 3. Suppose that $0<p<\infty, s \in \mathbb{R}, \alpha>-1$ and $f \in H(\mathbb{D})$ with $f(0)=0$. Then there exists a constant $C=C(p, s)$ such that

$$
\begin{equation*}
\int_{\mathbb{D}}|f(z)|^{p-s}\left|f^{\prime}(z)\right|^{s}\left(\log \frac{1}{|z|}\right)^{s} d A_{\alpha}(z) \geq C| | f \|_{A_{\alpha}^{p}}^{p} \tag{3}
\end{equation*}
$$

Corollary. Let $f \in \operatorname{Hol}(\mathbb{D})$ with $f(0)=0,0<p<\infty,-1<\alpha<\infty$ and $0 \leq s<p+2$. Then the following conditions are equivalent:
i) $f \in A_{\alpha}^{p}$,
ii) $\int_{\mathbb{D}}\left|f(z)^{p-s}\right| f^{\prime}(z)^{s}\left(1-|z|^{2}\right)^{s} d A_{\alpha}(z)<\infty$.
2. Proofs. For positive functions f, g defined in \mathbb{D} we write

$$
f(z) \sim g(z) \text { as }|z| \rightarrow 1^{-},
$$

if

$$
\lim _{|z| \rightarrow 1^{-}} \frac{f(z)}{g(z)}=K \in(0,+\infty) .
$$

We will use the following well-known lemma. Its proof can be found e.g. in $[9$, p. 15].
Lemma. For any $\beta>0$

$$
\int_{0}^{2 \pi} \frac{d \theta}{\left|1-z e^{-i \theta}\right|^{1+\beta}} \sim \frac{1}{\left(1-|z|^{2}\right)^{\beta}} \quad \text { as }|z| \rightarrow 1^{-} .
$$

Proof of Theorem 1. It follows from the proof of Theorem 5.9 in [2] that for every analytic function in $\mathbb{D}, r<1,0<p<q \leq \infty$,

$$
M_{q}(r, f) \leq(1-r)^{\frac{1}{q}-\frac{1}{p}} M_{p}(r, f)
$$

Furthermore, by the monotonicity of the integral mean $M_{p}^{p}(r, f)$ we get

$$
\begin{aligned}
\|f\|_{A_{\alpha}^{p}}^{p} & =C \int_{0}^{1} M_{p}^{p}(t, f)\left(1-t^{2}\right)^{\alpha} d t \geq C \int_{r}^{1} M_{p}^{p}(t, f)(1-t)^{\alpha} d t \\
& \geq C M_{p}^{p}(r, f) \int_{r}^{1}(1-t)^{\alpha} d t=C M_{p}^{p}(r, f)(1-r)^{\alpha+1}
\end{aligned}
$$

which implies

$$
M_{p}(r, f) \leq C \frac{\|f\|_{A_{\alpha}^{p}}}{(1-r)^{\frac{\alpha+1}{p}}}, \quad 0<r<1 .
$$

Therefore

$$
\begin{aligned}
M_{q}^{l}(r, f) & (1-r)^{l \beta-1-\alpha} \leq M_{p}^{l-p}(r, f)(1-r)^{\left(\frac{1}{q}-\frac{1}{p}\right) l+l \beta-1-\alpha} M_{p}^{p}(r, f) \\
& \leq C\|f\|_{A_{\alpha}^{p}}^{l-p}(1-r)^{-\frac{1}{p}(1+\alpha)(l-p)}(1-r)^{\left(\frac{1}{q}-\frac{1}{p}\right) l+l \beta-1-\alpha} M_{p}^{p}(r, f) \\
& =C\|f\|_{A_{\alpha}^{p}}^{l-p}(1-r)^{l\left(\beta-\left(\frac{2+\alpha}{p}-\frac{1}{q}\right)\right)} M_{p}^{p}(r, f) \\
& \leq C\|f\|_{A_{\alpha}^{p}}^{l-p} M_{p}^{p}(r, f)
\end{aligned}
$$

Multiplying both sides by $(1-r)^{\alpha}$ and integrating with respect to r give

$$
\int_{0}^{1}(1-r)^{l \beta-1} M_{q}^{l}(r, f) d r \leq C\|f\|_{A_{\alpha}^{p}}^{l}
$$

We remark that the exponent β is best possible. If $\beta<\frac{2+\alpha}{p}-\frac{1}{q}$, then $\beta=\frac{2+\alpha}{p}-\epsilon-\frac{1}{q}=\gamma-\frac{1}{q}$, where $\epsilon>0$. Thus the function $f(z)=(1-z)^{-\gamma} \in$ A_{α}^{p} and by Lemma,

$$
\begin{aligned}
\int_{0}^{1}(1-r)^{l \beta-1} M_{q}^{l}(r, f) d r & \geq C \int_{0}^{1}(1-r)^{l \beta-1}(1-r)^{-(\gamma q-1) \frac{l}{q}} d r \\
& =C \int_{0}^{1}(1-r)^{l\left(\beta-\gamma+\frac{1}{q}\right)-1} d r=+\infty .
\end{aligned}
$$

Proof of Theorem 2. Assume first that $f \in A_{\alpha}^{p}$ and $2 \leq s<p+2$. In this case the method described in [9] can be applied. By Theorem L

$$
\begin{equation*}
\int_{\mathbb{D}}\left|f_{r}(z)\right|^{p-s}\left|f_{r}^{\prime}(z)\right|^{s}(1-|z|)^{s-1} d A(z) \leq\left\|f_{r}\right\|_{H^{p}}^{p} \tag{4}
\end{equation*}
$$

where $f_{r}(z)=f(r z), 0<r<1, z \in \mathbb{D}$. The left-hand side of inequality (4) is equal to

$$
\begin{align*}
& \int_{\mathbb{D}}|f(r z)|^{p-s}\left|f^{\prime}(r z)\right|^{s} r^{s}(1-|z|)^{s-1} d A(z) \\
& \quad=\int_{|\zeta|<r}|f(\zeta)|^{p-s}\left|f^{\prime}(\zeta)\right|^{s} r^{s}\left(1-\frac{|\zeta|}{r}\right)^{s-1} r^{-2} d A(\zeta) \tag{5}\\
& \quad=\frac{1}{\pi} \int_{0}^{r} \int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)\right|^{p-s}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{s}\left(1-\frac{\rho}{r}\right)^{s-1} r^{s-2} \rho d \theta d \rho .
\end{align*}
$$

Multiplying both sides of (4) by $(1+\alpha) 2 r\left(1-r^{2}\right)^{\alpha}$ and integrating with respect to r we get

$$
\begin{gathered}
\frac{2}{\pi} \int_{0}^{1} \int_{0}^{r} \int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)\right|^{p-s}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{s}\left(1-\frac{\rho}{r}\right)^{s-1} r^{s-2} \rho d \theta d \rho(1+\alpha) r\left(1-r^{2}\right)^{\alpha} d r \\
\quad \leq \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta(1+\alpha) r\left(1-r^{2}\right)^{\alpha} d r
\end{gathered}
$$

By Fubini's theorem,

$$
\begin{gathered}
(\alpha+1) \frac{2}{\pi} \int_{0}^{1} \int_{\rho}^{1}\left(\int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)\right|^{p-s}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{s} \rho d \theta\right)\left(1-\frac{\rho}{r}\right)^{s-1} r^{s-1}\left(1-r^{2}\right)^{\alpha} d r d \rho \\
\leq \int_{\mathbb{D}}|f(z)|^{p} d A_{\alpha}(z)=\|f\|_{A_{\alpha}^{p}}^{p}
\end{gathered}
$$

Put

$$
F(\rho)=\int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)\right|^{p-s}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{s} \rho d \theta .
$$

Then the left-hand side of the last inequality can be written as

$$
\begin{aligned}
(\alpha+1) & \frac{2}{\pi} \int_{0}^{1} \int_{\rho}^{1} F(\rho)(r-\rho)^{s-1}\left(1-r^{2}\right)^{\alpha} d r d \rho \\
& =(\alpha+1) \frac{2}{\pi} \int_{0}^{1} F(\rho)\left(\int_{\rho}^{1}(r-\rho)^{s-1}\left(1-r^{2}\right)^{\alpha} d r\right) d \rho
\end{aligned}
$$

Now, since

$$
\begin{aligned}
\int_{\rho}^{1}(r-\rho)^{s-1}\left(1-r^{2}\right)^{\alpha} d r & \geq \int_{\frac{1+\rho}{2}}^{1}(r-\rho)^{s-1}\left(1-r^{2}\right)^{\alpha} d r \\
& \geq \int_{\frac{1+\rho}{2}}^{1}(1-r)^{s+\alpha-1} d r=\frac{1}{(s+\alpha) 2^{s+\alpha}}(1-\rho)^{s+\alpha}
\end{aligned}
$$

we get

$$
\begin{aligned}
(\alpha+1) & \frac{2}{\pi} \int_{0}^{1} F(\rho)\left(\int_{\rho}^{1}(r-\rho)^{s-1}\left(1-r^{2}\right)^{\alpha} d r\right) d \rho \\
& \geq \frac{(\alpha+1)}{(s+\alpha) 2^{s+\alpha}} \frac{2}{\pi} \int_{0}^{1} F(\rho)(1-\rho)^{s+\alpha} d \rho \\
& =\frac{(\alpha+1)}{(s+\alpha) 2^{s+\alpha}} \frac{2}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)\right|^{p-s}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{s}(1-\rho)^{s+\alpha} \rho d \theta d \rho \\
& =\frac{1}{(s+\alpha) 2^{s+\alpha-1}} \int_{\mathbb{D}}|f(z)|^{p-s}\left|f^{\prime}(z)\right|^{s}(1-|z|)^{s} d A_{\alpha}(z)
\end{aligned}
$$

Suppose now that $0<s<2$. Then using Hölder's inequality we obtain

$$
\begin{aligned}
& \int_{\mathbb{D}}|f(z)|^{p-s}\left|f^{\prime}(z)\right|^{s}(1-|z|)^{s} d A_{\alpha}(z) \\
& =\int_{\mathbb{D}}|f(z)|^{\frac{(p-2) s}{2}}\left|f^{\prime}(z)\right|^{s}(1-|z|)^{s}|f(z)|^{\frac{(2-s) p}{2}} d A_{\alpha}(z) \\
& \leq\left\{\int_{\mathbb{D}}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2}(1-|z|)^{2} d A_{\alpha}(z)\right\}^{\frac{s}{2}}\left\{\int_{\mathbb{D}}|f(z)|^{\frac{(2-s) p}{2} \frac{2}{2-s}} d A_{\alpha}(z)\right\}^{\frac{2-s}{2}} \\
& \leq\left\{(2+\alpha) 2^{1+\alpha}| | f \|_{A_{\alpha}^{p}}^{p}\right\}^{\frac{s}{2}}\left\{\|f\|_{A_{\alpha}^{p}}^{p}\right\}^{1-\frac{s}{2}}=C\|f\|_{A_{\alpha}^{p}}^{p}
\end{aligned}
$$

where the last inequality follows from the case $s=2$.
We remark that the function $f(z)=z$ gives the estimate $s>-\alpha-1$. This example shows also that the inequality does not hold for $s=p+2$. We do not know whether the condition $s \geq 0$ is best possible.

In the proof of the next theorem we use the following version of Hölder's inequality (see e.g., [4, p. 140]). Suppose that F i G are nonnegative and $F \in\left(L^{p}, d \mu\right), G \in\left(L^{q}, d \mu\right)$. For $p \neq 0$ let q be its conjugate, that is,
$\frac{1}{p}+\frac{1}{q}=1$. If $p \in(0,1)$ or $p<0$, then

$$
\begin{equation*}
\int_{X} F G d \mu \geq\left\{\int_{X} F^{p} d \mu\right\}^{\frac{1}{p}}\left\{\int_{X} G^{q} d \mu\right\}^{\frac{1}{q}} \tag{6}
\end{equation*}
$$

Proof of Theorem 3. Proceeding as in the proof of Theorem 2 in [6] one can get

$$
\begin{aligned}
& \int_{\mathbb{D}}|f(z)|^{p} d A_{\alpha}(z) \\
& \quad=p^{2}(1+\alpha) \int_{0}^{1} r\left(1-r^{2}\right)^{\alpha} \int_{0}^{r} \int_{|z|<t} \frac{1}{t}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2} d A(z) d t d r
\end{aligned}
$$

By Fubini's theorem the right-hand side of the last inequality is equal to

$$
\begin{aligned}
& \frac{p^{2}}{2} \int_{0}^{1} \frac{\left(1-t^{2}\right)^{\alpha+1}}{t} \int_{|z|<t}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2} d A(z) d t \\
& \quad \leq \frac{p^{2}}{2} \int_{\mathbb{D}} \int_{|z|}^{1} \frac{\left(1-t^{2}\right)^{\alpha+1}}{t} d t|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2} d A(z) \\
& \quad \leq \frac{p^{2}}{2} \int_{\mathbb{D}} \int_{|z|}^{1} \frac{\left(1-|z|^{2}\right)^{\alpha+1}}{t} d t|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2} d A(z) \\
& \quad \leq \frac{p^{2}}{2(\alpha+1)} \int_{\mathbb{D}}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\alpha}\left(1-|z|^{2}\right) \log \frac{1}{|z|} d A(z) \\
& \quad \leq \frac{p^{2}}{2(\alpha+1)} \int_{\mathbb{D}}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2}\left(\log \frac{1}{|z|}\right)^{2} d A_{\alpha}(z)
\end{aligned}
$$

Consequently

$$
\int_{\mathbb{D}}|f(z)|^{p} d A_{\alpha}(z) \leq \frac{p^{2}}{2(\alpha+1)} \int_{\mathbb{D}}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2}\left(\log \frac{1}{|z|}\right)^{2} d A_{\alpha}(z)
$$

Suppose now that $s>2$ or $s<0$. Then, by Hölder's inequality (6) and the case $s=2$

$$
\begin{aligned}
& \int_{\mathbb{D}}|f(z)|^{p-s}\left|f^{\prime}(z)\right|^{s} \log ^{s} \frac{1}{|z|} d A_{\alpha}(z) \\
& =\int_{\mathbb{D}}|f(z)|^{\frac{(p-2) s}{2}}\left|f^{\prime}(z)\right|^{s} \log ^{s} \frac{1}{|z|}|f(z)|^{\frac{(2-s) p}{2}} d A_{\alpha}(z) \\
& \geq\left\{\int_{\mathbb{D}}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2} \log ^{2} \frac{1}{|z|} d A_{\alpha}(z)\right\}^{\frac{s}{2}}\left\{\int_{\mathbb{D}}|f(z)|^{\frac{(2-s) p}{2} \frac{2}{2-s}} d A_{\alpha}(z)\right\}^{\frac{2-s}{2}} \\
& \geq C\left\{\|\left. f\right|_{A_{\alpha}^{p}} ^{p}\right\}^{\frac{s}{2}}\left\{\|\left. f\right|_{A_{\alpha}^{p}} ^{p}\right\}^{1-\frac{s}{2}}=C| | f \|_{A_{\alpha}^{p}}^{p}
\end{aligned}
$$

Finally, assume that $0<s<2$. Applying (6) with $p=\frac{s}{2}, q=\frac{s}{s-2}$, we get

$$
\begin{aligned}
& \int_{\mathbb{D}}|f(z)|^{p-s}\left|f^{\prime}(z)\right|^{s} \log ^{s} \frac{1}{|z|} d A_{\alpha}(z) \\
&= \int_{\mathbb{D}}|f(z)|^{\frac{(p-2) 2}{s}}\left|f^{\prime}(z)\right|^{\frac{4}{s}} \log ^{\frac{4}{s}} \frac{1}{|z|} \\
& \times|f(z)|^{\frac{(s-2)(p-(s+2))}{s}}\left|f^{\prime}(z)\right|^{\frac{(s+2)(s-2)}{s}} \log \frac{(s+2)(s-2)}{s} \\
&|z| \\
& d A_{\alpha}(z) \\
& \geq\left\{\int_{\mathbb{D}}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2} \log ^{2} \frac{1}{|z|} d A_{\alpha}(z)\right\}^{\frac{2}{s}} \\
& \times\left\{\int_{\mathbb{D}}|f(z)|^{p-(s+2)}\left|f^{\prime}(z)\right|^{s+2} \log ^{s+2} \frac{1}{|z|} d A_{\alpha}(z)\right\}^{\frac{s-2}{s}} \\
& \geq C\left\{\|\left. f\right|_{A_{\alpha}^{p}} ^{p}\right\}^{\frac{s}{2}}\left\{\|\left. f\right|_{A_{\alpha}^{p}} ^{p}\right\}^{1-\frac{s}{2}}=\left.C| | f\right|_{A_{\alpha}^{p}} ^{p}
\end{aligned}
$$

where the last inequality follows from the proved case.

References

[1] Beatrous, F. Jr., Burbea, J., Characterizations of spaces of holomorphic functions in the ball, Kodai Math. J. 8 (1985), 36-51.
[2] Duren, P. L., Theory of H^{p} Spaces, Academic Press, New York-London, 1970.
[3] Hardy, G. H., Littlewood, J. E., Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439.
[4] Hardy, G. H., Littlewood, J. E. and Pólia, G., Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952.
[5] Luecking, D. H., A new proof of an inequality of Littelwood and Paley, Proc. Amer. Math. Soc. 103 (1988), 887-983.
[6] Nowak, M., Bloch space on the unit ball of C^{n}, Ann. Acad. Sci. Fenn. Math. 23 (1998), 461-473.
[7] Ouyang, C., Yang, W. and Zhao, R., Characterization of Bergman spaces and Bloch spaces in the unit ball, Trans. Amer. Math. Soc. 347 (1995), 4301-4313.
[8] Watanabe, H., Some properties of functions in Bergman space A^{p}, Proc. Fac. Sci. Tokai Univ. 13 (1978), 39-54.
[9] Zhu, K., Translating inequalities between Hardy and Bergman spaces, Amer. Math. Monthly 111 (2004), 520-525.
[10] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.

Paweł Sobolewski
Institute of Mathematics
M. Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: ptsob@golem.umcs.lublin.pl
Received March 28, 2007

