ANNALES
UNIVERSITATIS MARIAE CURIE-SKLEODOWSKA
LUBLIN-POLONIA

VOL. LXI, 2007 SECTIO A 137-143

PAWEL SOBOLEWSKI

Inequalities for Bergman spaces

ABSTRACT. In this paper we prove an inequality for weighted Bergman spaces
AP0 < p < o0, -1 < a < oo, that corresponds to Hardy—Littlewood
inequality for Hardy spaces. We give also a necessary and sufficient condition
for an analytic function f in D to belong to A%.

1. Introduction and statement of results. Let D be the open unit disc
in the complex plane C. For 0 < p < oo the Hardy space HP consists of
analytic functions f in D such that

[fllge = sup Mp(r, f) < oo,
0<r<1
where
1 [27 ” v
My f) = {5 [ lreetypas}”

For —1 < a < 0o and 0 < p < oo the weighted Bergman space A% consists
of analytic functions f in D such that

1A% = [ 1FGIPdAu(:) < o,
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where
dAy(2) = (a4 1)(1 — |2]?)*dA(2)
and dA(z) is the area measure on D normalized so that A(D) = 1.

In this paper we obtain some inequalities for Bergman spaces that corre-
spond to the inequalities for Hardy spaces. In the proof of Theorem 2 we
use the general method for translating the known equalities for H? spaces
to Bergman spaces version described in [9]. We first recall the Hardy—
Littlewood inequality for H? spaces.

Theorem HL. Suppose that 0 <p < q<oo, f=1—

1
P q’
s a positive constant C' such that

1
/0 (1= ) M, f)dr < C Lo

Here we prove the following theorem for Bergman spaces.

Il > q. Then there

Theorem 1. Suppose that0<p<q§oo,l2p,ﬂ:2+7a—%, -l<a<
oo. Then there exists a positive constant C such that

1
| a=netaie par < cilfily,.

We note that Theorem 1 generalizes Lemma 5 in [8]. In 1988 D. Luecking
proved the following generalization of the Littlewood and Paley inequality
for Hardy spaces.

Theorem L. Let 0 < p,s < +oo. Then there exists a constant C = C(p, s)
such that

(1) /le(Z)ps!f'(Z)!S(l — |2)* 1 dA(2) < Ol fI
forall f € HP if and only if 2 <s<p-+2.
For Bergman spaces we get

Theorem 2. Let0<p< oo, -1 <a<ooand 0<s<p+2. Then there
exists a constant C' = C(p, s) such that

(2) /D [FEP*1f (21 (1 = |2])*dAa(z) < ClIfI}
for all f € AL,
The next theorem is, in some sense, the converse of Theorem 2.

Theorem 3. Suppose that 0 < p < 0o, s € R, a > —1 and f € H(D) with
f(0) =0. Then there exists a constant C' = C(p, s) such that

) L1s@r1r@F (1os ) d4a) = Clfll,
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Corollary. Let f € Hol(D) with f(0) =0,0<p < o0, -1 < a < oo and
0 <s<p+2. Then the following conditions are equivalent:

i) feAq,
i) [ £GP 17 (1= P dda() < .
D

2. Proofs. For positive functions f, g defined in D we write

f(z) ~g(z) as [z =17,

lim /) =K € (0,+00).
lzl-1- g(2)
We will use the following well-known lemma. Its proof can be found e.g.

in [9, p. 15].

if

Lemma. For any 8 >0

/27r do 1 2 = 1-
. ~ as |z| —17.
o [1—ze ™[I0 (1 |z2)P
Proof of Theorem 1. It follows from the proof of Theorem 5.9 in [2] that
for every analytic function in D, r <1, 0 < p < g < o0,
11
Mq(T, f<@—r)d pMp(T7 ).

Furthermore, by the monotonicity of the integral mean M} (r, f) we get
1 1
I =€ [ M=) ae=c [ aagie. - orar

1
> Mg ) [0 i = CMYG (1 -,

which implies

|11z

a+1 )

(I—7r)>

My(r,f) < C 0<r<l1.

Therefore

ML, )1 — )81 < MEp G, (1 — ) R e )

< Ol = ) 3D (g (573) ey gy

_ 1 B—(2tx_1L
— Al = D) e, g)
< C|IfI15 Mp(r. f).
Multiplying both sides by (1 — r)® and integrating with respect to r give

1
| a= e par < Clfily, 0
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We remark that the exponent (3 is best possible. If G < 2‘;" — =, then
B = QJFTQ—G—% = 'y—é, where € > 0. Thus the function f(z) = (1— ) Te
A% and by Lemma,
1
/ (1—r)h- 1Ml(r f dr>C’/ YW= — r)_(wq_l)édr
0
—C’/ Bwr)ldr:—i-oo.

Proof of Theorem 2. Assume first that f € A and 2 < s < p+2. In
this case the method described in [9] can be applied. By Theorem L

(4) /Dfr(Z)lp_Slfl(Z)ls(l = l21)* 7 dA(2) < || £el o,

where f,(z) = f(rz), 0 <r <1, z € D. The left-hand side of inequality (4)
is equal to

L2l - ) aa
_ p—s S8 |<| 72
(5) —/<<T|<>| POl (1 ) 2A(Q)

=2 [ [t e (- 2) 2t

Multiplying both sides of (4) by (1 + a)2r(1 —r2)® and integrating with
respect to r we get

2 1 r 2m i0 —s| p! i\ 1S p s—1 . .

1 1 2 )
< 7T/O /O £ (re®)PdO(1 + a)r(1 — r2)°dr.

By Fubini’s theorem,

2 vt o 7 —s| g/ 10\ s p s—1 S— o
(0‘“>7r/0/,,</0 £ (o) (pei®)] pde)(lr) P (1=r2)%drdp
PdA,(2) = b
S/le(Z)l (2) = I/
Put

27 ) )
F(p) = / £ P51 £ (pe®)| pdb.
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Then the left-hand side of the last inequality can be written as

(a+1)= / / LA — r?)Ydrdp
1
(/ r2)°‘dr> dp.
p
Now, since

/
/pl<r—p>“<1 P)dr > /;w—p)s Y1) dr

=(a+1)—

1
> [0 = e
we get
g ! ! r— s—1 —7“2 o r
<a+1>ﬂ/0F<p></p< P ) dy
(@+1) 2 f! sta
2(.9+a)25+0‘7r/F(p)(1 p)*Tedp

(a+1) 2 \ .
(s + ) 23+a7r// (o) P=5| £ (pe™) [P (1 = p)*** pdfdp

- MW/DIf(z)I”‘SIf’(z)IS(l— 12])*dAq(2).

Suppose now that 0 < s < 2. Then using Holder’s inequality we obtain

/le(Z)l”_slf’(Z)ls(l — |2])°dAa(z)

Z/le(z) =
< {/D\f(z)‘llﬂ’f/( )2(1 = |2])2dAa( } {/ #2) .

Sl
< {@+ a2 o, ) (I, ) 7 = i,

where the last inequality follows from the case s = 2. ]

PP - 21 ()] T dAa(2)

We remark that the function f(z) = z gives the estimate s > —a — 1.
This example shows also that the inequality does not hold for s = p + 2.
We do not know whether the condition s > 0 is best possible.

In the proof of the next theorem we use the following version of Holder’s
inequality (see e.g., [4, p. 140]). Suppose that F' i G are nonnegative and
F € (LP,dp), G € (L4,du). For p # 0 let ¢ be its conjugate, that is,
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+=-=1.1Ifpe (0,1) or p <0, then

1,1
P q

- [ ran={[ deu}i ( qu}?

Proof of Theorem 3. Proceeding as in the proof of Theorem 2 in [6] one
can get

/ F(2)PdA(2)
D

— (1 +a) / (1-1r) / / L FP2f () PdA () dtdr.

|z <t t

By Fubini’s theorem the right-hand side of the last inequality is equal to

Ol+1
/ /||< RS P72 f(2)|2dA(z)dt
t2 a+1
//II L dt|f ()PP (2)PdA(2)

p* 1—|Z| a+1 NP2 £ (2)|2 .
< 2/@/|Z|t L ()P 211 ()PAAC)

p2 Zp—2lz2 _Z2 Py 0g —
< sy LGP R = (= (=) log dA()

p2 =21 ¢ (N2 (10 i ? .
< sy [P (o ) dae)

Consequently

p z 7102 pr2/220i2 z
[ireran < g s [1rer21r e (s ) daat)

Suppose now that s > 2 or s < 0. Then, by Hoélder’s inequality (6) and
the case s =2

/ FEP1(2)]* log? ﬁdAm
/!f (@) 108’ ‘\f (2)] 55 A (2)

{/!f Mrf()r?log, } { [1re1%

> c{lifl, ) {Ine} 7 = el

a<z>}22s
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Finally, assume that 0 < s < 2. Applying (6) with p = 3, ¢ =

S

=5, We get

/D FEP1 () log® - dAa(2)

2]

- / PO 72|
D

(s=2)(p—(s+2))

4 4
s s

1
|2
(s+2)(s=2) (s+2)(s=2) 1

[f'(z)] = log—

log

x| f(z)] dAq(2)

E

= { [irera1r P o idmz)}ﬁ

2]
» { [P 0g 1dAa<z>}
D

2|

s—2
s

>c{lifln ) (I} = s,

where the last inequality follows from the proved case. O
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