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PAWEŁ SOBOLEWSKI

Inequalities for Bergman spaces

Abstract. In this paper we prove an inequality for weighted Bergman spaces
Ap

α, 0 < p < ∞, −1 < α < ∞, that corresponds to Hardy–Littlewood
inequality for Hardy spaces. We give also a necessary and sufficient condition
for an analytic function f in D to belong to Ap

α.

1. Introduction and statement of results. Let D be the open unit disc
in the complex plane C. For 0 < p < ∞ the Hardy space Hp consists of
analytic functions f in D such that

||f ||Hp = sup
0<r<1

Mp(r, f) < ∞,

where

Mp(r, f) =
{

1
2π

∫ 2π

0
|f(reiθ)|pdθ

} 1
p

.

For −1 < α < ∞ and 0 < p < ∞ the weighted Bergman space Ap
α consists

of analytic functions f in D such that

||f ||p
Ap

α
=

∫
D
|f(z)|pdAα(z) < ∞,
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where
dAα(z) = (α + 1)(1− |z|2)αdA(z)

and dA(z) is the area measure on D normalized so that A(D) = 1.
In this paper we obtain some inequalities for Bergman spaces that corre-
spond to the inequalities for Hardy spaces. In the proof of Theorem 2 we
use the general method for translating the known equalities for Hp spaces
to Bergman spaces version described in [9]. We first recall the Hardy–
Littlewood inequality for Hp spaces.

Theorem HL. Suppose that 0 < p < q ≤ ∞, β = 1
p −

1
q , l ≥ q. Then there

is a positive constant C such that∫ 1

0
(1− r)lβ−1M l

q(r, f)dr ≤ C||f ||lHp .

Here we prove the following theorem for Bergman spaces.

Theorem 1. Suppose that 0 < p < q ≤ ∞, l ≥ p, β = 2+α
p − 1

q , −1 < α <

∞. Then there exists a positive constant C such that∫ 1

0
(1− r)lβ−1M l

q(r, f)dr ≤ C||f ||lAp
α
.

We note that Theorem 1 generalizes Lemma 5 in [8]. In 1988 D. Luecking
proved the following generalization of the Littlewood and Paley inequality
for Hardy spaces.

Theorem L. Let 0 < p, s < +∞. Then there exists a constant C = C(p, s)
such that

(1)
∫

D
|f(z)|p−s|f ′(z)|s(1− |z|)s−1dA(z) ≤ C||f ||pHp

for all f ∈ Hp if and only if 2 ≤ s < p + 2.

For Bergman spaces we get

Theorem 2. Let 0 < p < ∞, −1 < α < ∞ and 0 ≤ s < p + 2. Then there
exists a constant C = C(p, s) such that

(2)
∫

D
|f(z)|p−s|f ′(z)|s(1− |z|)sdAα(z) ≤ C||f ||p

Ap
α

for all f ∈ Ap
α.

The next theorem is, in some sense, the converse of Theorem 2.

Theorem 3. Suppose that 0 < p < ∞, s ∈ R, α > −1 and f ∈ H(D) with
f(0) = 0. Then there exists a constant C = C(p, s) such that

(3)
∫

D
|f(z)|p−s|f ′(z)|s

(
log

1
|z|

)s

dAα(z) ≥ C||f ||p
Ap

α
.
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Corollary. Let f ∈ Hol (D) with f(0) = 0, 0 < p < ∞, −1 < α < ∞ and
0 ≤ s < p + 2. Then the following conditions are equivalent:
i) f ∈ Ap

α,

ii)
∫

D
|f(z)p−s|f ′(z)s(1− |z|2)sdAα(z) < ∞.

2. Proofs. For positive functions f, g defined in D we write
f(z) ∼ g(z) as |z| → 1−,

if

lim
|z|→1−

f(z)
g(z)

= K ∈ (0,+∞).

We will use the following well-known lemma. Its proof can be found e.g.
in [9, p. 15].

Lemma. For any β > 0∫ 2π

0

dθ

|1− ze−iθ|1+β
∼ 1

(1− |z|2)β
as |z| → 1−.

Proof of Theorem 1. It follows from the proof of Theorem 5.9 in [2] that
for every analytic function in D, r < 1, 0 < p < q ≤ ∞,

Mq(r, f) ≤ (1− r)
1
q
− 1

p Mp(r, f).

Furthermore, by the monotonicity of the integral mean Mp
p (r, f) we get

||f ||p
Ap

α
= C

∫ 1

0
Mp

p (t, f)
(
1− t2

)α
dt ≥ C

∫ 1

r
Mp

p (t, f)(1− t)αdt

≥ CMp
p (r, f)

∫ 1

r
(1− t)αdt = CMp

p (r, f)(1− r)α+1,

which implies

Mp(r, f) ≤ C
||f ||Ap

α

(1− r)
α+1

p

, 0 < r < 1.

Therefore

M l
q(r, f)(1− r)lβ−1−α ≤ M l−p

p (r, f)(1− r)
(

1
q
− 1

p

)
l+lβ−1−α

Mp
p (r, f)

≤ C||f ||l−p
Ap

α
(1− r)−

1
p
(1+α)(l−p)(1− r)

(
1
q
− 1

p

)
l+lβ−1−α

Mp
p (r, f)

= C||f ||l−p
Ap

α
(1− r)l

(
β−( 2+α

p
− 1

q
)
)
Mp

p (r, f)

≤ C||f ||l−p
Ap

α
Mp

p (r, f).

Multiplying both sides by (1− r)α and integrating with respect to r give∫ 1

0
(1− r)lβ−1M l

q(r, f)dr ≤ C||f ||lAp
α
. �
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We remark that the exponent β is best possible. If β < 2+α
p − 1

q , then
β = 2+α

p − ε− 1
q = γ− 1

q , where ε > 0. Thus the function f(z) = (1−z)−γ ∈
Ap

α and by Lemma,∫ 1

0
(1− r)lβ−1M l

q(r, f)dr ≥ C

∫ 1

0
(1− r)lβ−1(1− r)−(γq−1) l

q dr

= C

∫ 1

0
(1− r)l

(
β−γ+ 1

q

)
−1

dr = +∞.

Proof of Theorem 2. Assume first that f ∈ Ap
α and 2 ≤ s < p + 2. In

this case the method described in [9] can be applied. By Theorem L

(4)
∫

D
|fr(z)|p−s|f ′r(z)|s(1− |z|)s−1dA(z) ≤ ||fr||pHp ,

where fr(z) = f(rz), 0 < r < 1, z ∈ D. The left-hand side of inequality (4)
is equal to

(5)

∫
D
|f(rz)|p−s|f ′(rz)|srs(1− |z|)s−1dA(z)

=
∫
|ζ|<r

|f(ζ)|p−s|f ′(ζ)|srs

(
1− |ζ|

r

)s−1

r−2dA(ζ)

=
1
π

∫ r

0

∫ 2π

0
|f(ρeiθ)|p−s|f ′(ρeiθ)|s

(
1− ρ

r

)s−1
rs−2ρdθdρ.

Multiplying both sides of (4) by (1 + α)2r(1− r2)α and integrating with
respect to r we get

2
π

∫ 1

0

∫ r

0

∫ 2π

0
|f(ρeiθ)|p−s|f ′(ρeiθ)|s

(
1− ρ

r

)s−1
rs−2ρdθdρ(1+α)r(1− r2)αdr

≤ 1
π

∫ 1

0

∫ 2π

0
|f(reiθ)|pdθ(1 + α)r(1− r2)αdr.

By Fubini’s theorem,

(α+1)
2
π

∫ 1

0

∫ 1

ρ

(∫ 2π

0
|f(ρeiθ)|p−s|f ′(ρeiθ)|sρdθ

)(
1− ρ

r

)s−1
rs−1(1−r2)αdrdρ

≤
∫

D
|f(z)|pdAα(z) = ||f ||p

Ap
α
.

Put

F (ρ) =
∫ 2π

0
|f(ρeiθ)|p−s|f ′(ρeiθ)|sρdθ.



Inequalities for Bergman spaces 141

Then the left-hand side of the last inequality can be written as

(α + 1)
2
π

∫ 1

0

∫ 1

ρ
F (ρ)(r − ρ)s−1(1− r2)αdrdρ

= (α + 1)
2
π

∫ 1

0
F (ρ)

(∫ 1

ρ
(r − ρ)s−1(1− r2)αdr

)
dρ.

Now, since∫ 1

ρ
(r − ρ)s−1(1− r2)αdr ≥

∫ 1

1+ρ
2

(r − ρ)s−1(1− r2)αdr

≥
∫ 1

1+ρ
2

(1− r)s+α−1dr =
1

(s + α)2s+α
(1− ρ)s+α,

we get

(α + 1)
2
π

∫ 1

0
F (ρ)

(∫ 1

ρ
(r − ρ)s−1(1− r2)αdr

)
dρ

≥ (α + 1)
(s + α)2s+α

2
π

∫ 1

0
F (ρ)(1− ρ)s+αdρ

=
(α + 1)

(s + α)2s+α

2
π

∫ 1

0

∫ 2π

0
|f(ρeiθ)|p−s|f ′(ρeiθ)|s(1− ρ)s+αρdθdρ

=
1

(s + α)2s+α−1

∫
D
|f(z)|p−s|f ′(z)|s(1− |z|)sdAα(z).

Suppose now that 0 < s < 2. Then using Hölder’s inequality we obtain∫
D
|f(z)|p−s|f ′(z)|s(1− |z|)sdAα(z)

=
∫

D
|f(z)|

(p−2)s
2 |f ′(z)|s(1− |z|)s|f(z)|

(2−s)p
2 dAα(z)

≤
{∫

D
|f(z)|p−2|f ′(z)|2(1− |z|)2dAα(z)

} s
2
{∫

D
|f(z)|

(2−s)p
2

2
2−s dAα(z)

} 2−s
2

≤
{

(2 + α)21+α||f ||p
Ap

α

} s
2
{
||f ||p

Ap
α

}1− s
2 = C||f ||p

Ap
α
,

where the last inequality follows from the case s = 2. �

We remark that the function f(z) = z gives the estimate s > −α − 1.
This example shows also that the inequality does not hold for s = p + 2.
We do not know whether the condition s ≥ 0 is best possible.
In the proof of the next theorem we use the following version of Hölder’s
inequality (see e.g., [4, p. 140]). Suppose that F i G are nonnegative and
F ∈ (Lp, dµ), G ∈ (Lq, dµ). For p 6= 0 let q be its conjugate, that is,
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1
p + 1

q = 1. If p ∈ (0, 1) or p < 0, then

(6)
∫

X
FGdµ ≥

{∫
X

F pdµ

} 1
p

{∫
X

Gqdµ

} 1
q

.

Proof of Theorem 3. Proceeding as in the proof of Theorem 2 in [6] one
can get∫

D
|f(z)|pdAα(z)

= p2(1 + α)
∫ 1

0
r(1− r2)α

∫ r

0

∫
|z|<t

1
t
|f(z)|p−2|f ′(z)|2dA(z)dtdr.

By Fubini’s theorem the right-hand side of the last inequality is equal to

p2

2

∫ 1

0

(1− t2)α+1

t

∫
|z|< t

|f(z)|p−2|f ′(z)|2dA(z)dt

≤ p2

2

∫
D

∫ 1

|z|

(1− t2)α+1

t
dt|f(z)|p−2|f ′(z)|2dA(z)

≤ p2

2

∫
D

∫ 1

|z|

(1− |z|2)α+1

t
dt|f(z)|p−2|f ′(z)|2dA(z)

≤ p2

2(α + 1)

∫
D
|f(z)|p−2|f ′(z)|2(1− |z|2)α(1− |z|2) log

1
|z|

dA(z)

≤ p2

2(α + 1)

∫
D
|f(z)|p−2|f ′(z)|2

(
log

1
|z|

)2

dAα(z).

Consequently∫
D
|f(z)|pdAα(z) ≤ p2

2(α + 1)

∫
D
|f(z)|p−2|f ′(z)|2

(
log

1
|z|

)2

dAα(z).

Suppose now that s > 2 or s < 0. Then, by Hölder’s inequality (6) and
the case s = 2∫

D
|f(z)|p−s|f ′(z)|s logs 1

|z|
dAα(z)

=
∫

D
|f(z)|

(p−2)s
2 |f ′(z)|s logs 1

|z|
|f(z)|

(2−s)p
2 dAα(z)

≥
{∫

D
|f(z)|p−2|f ′(z)|2 log2 1

|z|
dAα(z)

} s
2
{∫

D
|f(z)|

(2−s)p
2

2
2−s dAα(z)

} 2−s
2

≥ C
{
||f ||p

Ap
α

} s
2
{
||f ||p

Ap
α

}1− s
2 = C||f ||p

Ap
α
.
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Finally, assume that 0 < s < 2. Applying (6) with p = s
2 , q = s

s−2 , we get∫
D
|f(z)|p−s|f ′(z)|s logs 1

|z|
dAα(z)

=
∫

D
|f(z)|

(p−2)2
s |f ′(z)|

4
s log

4
s

1
|z|

× |f(z)|
(s−2)(p−(s+2))

s |f ′(z)|
(s+2)(s−2)

s log
(s+2)(s−2)

s
1
|z|

dAα(z)

≥
{∫

D
|f(z)|p−2|f ′(z)|2 log2 1

|z|
dAα(z)

} 2
s

×
{∫

D
|f(z)|p−(s+2)|f ′(z)|s+2 logs+2 1

|z|
dAα(z)

} s−2
s

≥ C
{
||f ||p

Ap
α

} s
2
{
||f ||p

Ap
α

}1− s
2 = C||f ||p

Ap
α
,

where the last inequality follows from the proved case. �
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