
ANNALES
UNIVERS ITAT I S MARIAE CUR IE - SKŁODOWSKA

LUBL IN – POLONIA

VOL. LXI, 2007 SECTIO A 1–8

C. S. BAGEWADI, D. G. PRAKASHA and VENKATESHA

On pseudo projectively flat LP-Sasakian manifold
with a coefficient α

Abstract. Recently, the notion of Lorentzian almost paracontact manifolds
with a coefficient α has been introduced and studied by De et al. [1]. In the
present paper we investigate pseudo projectively flat LP-Sasakian manifold
with a coefficient α.

1. Introduction. In 1989, Matsumoto [2] introduced the notion of LP-
Sasakian manifolds. Then Mihai and Rosca [3] introduced the same notion
independently and they obtained several results in this manifold. In a recent
paper, De, Shaikh and Sengupta [1] introduced the notion of LP-Sasakian
manifolds with a coefficient α, which generalizes the notion of LP-Sasakian
manifolds.
In the present paper we study pseudo projectively flat LP-Sasakian man-
ifold with a coefficient α. Here we prove that in a pseudo projectively flat
LP-Sasakian manifolds with a coefficient α the characteristic vector field is
a concircular vector field if and only if the manifold is η-Einstein and pseudo
projectively flat LP-Sasakian manifold with a coefficient α is a manifold of
constant curvature if the scalar curvature r is a constant.

2. Preliminaries. Let M be the n-dimensional differential manifold en-
dowed with a (1, 1) tensor field φ, a contravariant vector field ξ, a covariant
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vector field η and a Lorentzian metric g of type (0, 2) such that for each
point p ∈ M , the tensor gp : TpM × TpM → R is a non-degenerate in-
ner product of signature (−,+,+, . . . ,+), where TpM denotes the tangent
vector space of M at p and R is the real number space, which satisfies

(2.1) η(ξ) = −1, φ2X = X + η(X)ξ,

(2.2) g(X, ξ) = η(X), g(φX, φY ) = g(X,Y ) + η(X)η(Y )

for all vector fields X and Y . Then such a structure (φ, ξ, η, g) is termed
as Lorentzian almost paracontact structure and the manifold M with the
structure (φ, ξ, η, g) is called Lorentzian almost paracontact manifoldM [2].
In the Lorentzian almost paracontact manifold M , the following relations
hold [2]:

(2.3) φξ = 0, η(φX) = 0,

(2.4) ω(X,Y ) = ω(Y,X)

where ω(X,Y ) = g(X,φY ). In the Lorentzian almost paracontact manifold
M , if the relations

(2.5)
(∇Zω)(X,Y ) = α[(g(X,Z) + η(X)η(Z))η(Y )

+ (g(Y, Z) + η(Y )η(Z))η(X)]

and

(2.6) ω(X,Y ) =
1
α

(∇Xη)(Y )

hold, where ∇ denotes the operator of covariant differentiation with respect
to the Lorentzian metric g, then M is called an LP-Sasakian manifold with
a coefficient α [1]. An LP-Sasakian manifold with coefficient 1 is an LP-
Sasakian manifold [2].
If a vector field V satisfies the equation of the following form:

∇XV = βX + T (X)V,

where β is a non-zero scalar function and T is a covariant vector field, then
V is called a torse-forming vector field [5].
In a Lorentzian manifold M , if we assume that ξ is a unit torse-forming
vector field, then

(2.7) (∇Xη)(Y ) = α[g(X,Y ) + η(X)η(Y )],

where α is a non-zero scalar function. Hence the manifold admitting a unit
torse-forming vector field satisfying (2.7) is an LP-Sasakian manifold with
a coefficient α. And, if η satisfies

(2.8) (∇Xη)(Y ) = ε[g(X,Y ) + η(X)η(Y )], ε2 = 1,



On pseudo projectively flat LP-Sasakian manifold with a coefficient α 3

then M is called an LSP-Sasakian manifold [2]. In particular, if α satisfies
(2.7) and the equation of the following form:

(2.9) α(X) = Pη(X), α(X) = ∇Xα,

where P is a scalar function, then ξ is called a concircular vector field.
Let us consider an LP-Sasakian manifoldM with the structure (φ, ξ, η, g)
and with a coefficient α. Then we have the following relations [1]:

(2.10)
η(R(X,Y )Z) = −α(X)ω(Y, Z) + α(Y )ω(X,Z)

+ α2[g(Y, Z)η(X)− g(X,Z)η(Y )]

and

(2.11) S(X, ξ) = −ψα(X) + (n− 1)α2η(X) + α(φX),

where R, S denote respectively the curvature tensor and the Ricci tensor of
the manifold and ψ = Trace (φ).
We now state the following results, which are used in the later section.

Lemma 2.1 ([1]). In an LP-Sasakian manifold M with a non-constant
coefficient α, one of the following cases occurs:

i) ψ2 = (n− 1)2

ii) α(Y ) = −Pη(Y ),

where P = α(ξ).

Lemma 2.2 ([1]). In a Lorentzian almost paracontact manifoldM(φ, ξ, η, g)
with its structure (φ, ξ, η, g) satisfying ω(X,Y ) = 1

α(∇Xη)(Y ), where α is
a non-zero scalar function, the vector field ξ is torse-forming if and only if
the relation ψ2 = (n− 1)2 holds.

3. Pseudo projectively flat LP-Sasakian manifold with a coeffi-
cient α. Let us consider a pseudo projectively flat LP-Sasakian manifold
M (n > 3) with a coefficient α. First suppose that α is not constant. Then
since the pseudo projective curvature tensor vanishes, the curvature tensor
′R satisfies [4]

(3.1)

′R(X,Y, Z,W ) = − b
a
[S(Y, Z)g(X,W )− S(X,Z)g(Y,W )]

+
r

n

[
1

n− 1
+
b

a

]
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

and
′R(X,Y, Z,W ) = g(R(X,Y )Z,W )

where a, b are constants such that a, b 6= 0 and a + b(n − 1) 6= 0, r is the
scalar curvature of the manifold. Putting W = ξ in (3.1) and then using
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(2.10) and (2.11), we get

(3.2)

− α(X)ω(Y, Z) + α(Y )ω(X,Z) + α2[g(Y, Z)η(X)− g(X,Z)η(Y )]

= − b
a
[S(Y, Z)η(X)− S(X,Z)η(Y )]

+
r

n

[
1

n− 1
+
b

a

]
[g(Y, Z)η(X)− g(X,Z)η(Y )].

Again if we put X = ξ in (3.2) and using (2.3) and (2.11), we obtain

(3.3)

S(Y, Z) =
[
−a
b
α2 +

ar

bn(n− 1)
+
r

n

]
g(Y, Z)

+
[
−a
b
α2 − (n− 1)α2 +

ar

bn(n− 1)
+
r

n

]
η(Y )η(Z)

+ ψα(Z)− α(φZ)η(Y )− a

b
Pω(Y, Z)

where P = α(ξ).
If an LP-Sasakian manifoldM with the coefficient α satisfies the relation

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are the associated functions on the manifold, then the manifold
M is called an η-Einstein manifold. Then we have [1]

(3.4)
S(X,Y ) =

[
r

n− 1
− α2 − Pψ

n− 1

]
g(X,Y )

+
[

r

n− 1
− nα2 − nPψ

n− 1

]
η(X)η(Y ).

Putting X = Y = ei, in (3.4), where {ei} is an orthonormal basis of the
tangent space at a point of the manifold and taking summation over 1 ≤
i ≤ n, we get

(3.5) r = n(n− 1)α2 + nψP.

By virtue of (3.3) and (3.4) we get

(3.6)

[
α2

b
(a− b) +

r(b− a)
n(n− 1)b

− Pψ

(n− 1)

]
g(Y, Z)− ψα(Z)− α(φZ)η(Y )

+
[
α2

b
(a− b) +

r(b− a)
n(n− 1)b

− nPψ

(n− 1)

]
η(Y )η(Z)

+
a

b
Pω(Y, Z) = 0.

Putting Y = ξ in (3.6), we obtain

ψα(Z)− α(φZ) = −ψPη(Z),
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for all Z. Replace Z by Y in the above equation, we get

(3.7) ψα(Y )− α(φY ) = −ψPη(Y ),

for all Y . Using (3.7) in (3.6) and then by virtue of (3.5) we get

(3.8) P
a

b

[
ψ

n− 1
[g(Y, Z) + η(Y )η(Z)] + ω(Y, Z)

]
= 0.

If P = 0, then from (3.7) we have α(φY ) = ψα(Y ). Thus ψ is equal to ±1 as
ψ is an eigenvalue of the matrix (φ). Hence, by virtue of Lemma 2.1, we get
α(Y ) = 0 for all Y and so α is constant, which contradicts our assumption.
Consequently, we have P 6= 0 and hence from (3.8) we get

(3.9)
a

b

[
ψ

n− 1
[g(Y, Z) + η(Y )η(Z)] + ω(Y, Z)

]
= 0.

Putting Y = φY in (3.9) and then using (2.3), we obtain

(3.10)
a

b

[
ψ

n− 1
ω(Y, Z) + [g(Y, Z) + η(Y )η(Z)]

]
= 0.

Combining (3.9) and (3.10), we get

{ψ2 − (n− 1)2}[g(Y, Z) + η(Y )η(Z)] = 0,

which gives by virtue of n > 1

(3.11) ψ2 = (n− 1)2.

Hence Lemma 2.2 proves that ξ is torse-forming.
We have

(∇Xη)(Y ) = β{g(X,Y ) + η(X)η(Y )}.
Then from (2.6) we get

ω(X,Y ) =
β

α
{g(X,Y ) + η(X)η(Y )} = g

(
β

α
(X + η(X)ξ), Y

)
and ω(X,Y ) = g(φX, Y ).
Since g is non-singular, we have

φ(X) =
β

α
(X + η(X)ξ)

and

φ2(X) =
(
β

α

)2

(X + η(X)ξ).

It follows from (2.1) that
(

β
α

)2
= 1 and hence, α = ±β . Thus we have

φ(X) = ±(X + η(X)ξ).

By virtue of (3.7) we see that α(Y ) = −Pη(Y ), where P = α(ξ). Thus, we
conclude that ξ is a concircular vector field. Conversely, we suppose that
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ξ is a concircular vector field. Then we have the equation of the following
form:

(∇Xη)(Y ) = β{g(X,Y ) + η(X)η(Y )},
where β is a certain function and ∇Xβ = qη(X) for a certain scalar function
q. Hence by virtue of (2.6) we have α = ±β. Thus

Ω(X,Y ) = ε{g(X,Y ) + η(X)η(Y )}, ε2 = 1,

ψ = ε(n− 1), ∇Xα = α(X) = pη(X), p = εq.

Using these relations in (3.3) and (3.7), it can be easily seen that M is
η-Einstein. Thus we can state the following:

Theorem 3.1. In a pseudo projectively flat LP-Sasakian manifold M (n >
1) with a non-constant coefficient α, the characteristic vector field ξ is a
concircular vector field if and only if M is η-Einstein.

Next we consider the case where the coefficient α is constant. In this case
the following relations hold:

(3.12) η(R(X,Y )Z) = α2{g(Y, Z)η(X)− g(X,Z)η(Y )}

(3.13) S(X, ξ) = (n− 1)α2η(X).

Putting W = ξ in (3.1) and then using (3.12) and (3.13), we get

(3.14)
a · α2[g(Y, Z)η(X)−g(X,Z)η(Y )] + b[S(Y, Z)η(X)−S(X,Z)η(Y )]

− r

n

[
a

n− 1
+ b

]
[g(Y, Z)η(X)− g(X,Z)η(Y )] = 0.

Again putting X = ξ in (3.14) we get by virtue of (3.13) that

(3.15)
S(Y, Z) =

[
r

n

(
1 +

a

b(n− 1)

)
− a

b
α2

]
g(Y, Z)

+
(a+ b(n− 1))

b

[
r

n(n− 1)
− α2

]
η(Y )η(Z)

Hence we can state the following:

Theorem 3.2. A pseudo projectively flat LP-Sasakian manifold M (n > 1)
with a constant coefficient α is an η-Einstein manifold.

Differentiating (3.15) covariantly along X and making use of (2.6) we get

(∇XS)(Y, Z) =
dr(X)
n− 1

(
1 +

a

b(n− 1)

)
[g(Y, Z) + η(Y )η(Z)]

+
α(a+ b(n− 1))

b

[
r

n(n− 1)
− α2

]
× [ω(X,Y )η(Z) + ω(X,Z)η(Y )]
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where dr(X) = ∇Xr. This implies that

(3.16)

(∇XS)(Y, Z)− (∇Y S)(X,Z)

=
dr(X)
n− 1

(
1 +

a

b(n− 1)

)
[g(Y, Z) + η(Y )η(Z)]

− dr(Y )
n− 1

(
1 +

a

b(n− 1)

)
[g(X,Z) + η(X)η(Z)]

+
α(a+ b(n− 1))

b

[
r

n(n− 1)
− α2

]
× [ω(X,Z)η(Y )− ω(Y, Z)η(X)].

On the other hand, in our case, since we have (∇XP )(X,Y )Z = 0, we get
divP = 0, where “div” denotes the divergence. So for n > 1, divP = 0 gives

(3.17)

(∇XS)(Y, Z)− (∇Y S)(X,Z)

=
1

n(a+ b)

[
a+ (n− 1)b

n− 1

]
[g(Y, Z)dr(X)− g(X,Z)dr(Y )].

It follows from (3.16) and (3.17) that

(3.18)

1
n(a+ b)

[
a+ (n− 1)b

n− 1

]
[g(Y, Z)dr(X)− g(X,Z)dr(Y )]

=
dr(X)
n− 1

(
1 +

a

b(n− 1)

)
[g(Y, Z) + η(Y )η(Z)]

+
dr(Y )
n− 1

(
1 +

a

b(n− 1)

)
[g(X,Z) + η(X)η(Z)]

+
α(a+ b(n− 1))

b

[
r

n(n− 1)
− α2

]
× [ω(X,Z)η(Y ) + ω(Y, Z)η(X)].

If r is constant, then from (3.18) we obtain

α(a+ b(n− 1))
b

[
r

n(n− 1)
− α2

]
= 0.

Since a+ b(n− 1) 6= 0, the above equation gives

(3.19) r = n(n− 1)α2.

Now substituting (3.15) in (3.1) we get

(3.20)

′R(X,Y, Z,W ) = α2[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+
[
(a+ b(n− 1))

a

(
r

n(n− 1)
− α2

)]
× [g(Y,W )η(X)η(Z)− g(X,W )η(Y )η(Z)].
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Hence by using (3.19) in (3.20) it follows that,
′R(X,Y, Z,W ) = α2[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )].

This shows that the manifold is of constant curvature. Thus we can state
the following:

Theorem 3.3. In a pseudo projectively flat LP-Sasakian manifold M (n >
1) with a constant coefficient α, if the scalar curvature r is constant, then
M is of constant curvature.
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