ANNALES
 UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

C. S. BAGEWADI, D. G. PRAKASHA and VENKATESHA

On pseudo projectively flat LP-Sasakian manifold with a coefficient α

Abstract

Recently, the notion of Lorentzian almost paracontact manifolds with a coefficient α has been introduced and studied by De et al. [1]. In the present paper we investigate pseudo projectively flat LP-Sasakian manifold with a coefficient α.

1. Introduction. In 1989, Matsumoto [2] introduced the notion of LPSasakian manifolds. Then Mihai and Rosca [3] introduced the same notion independently and they obtained several results in this manifold. In a recent paper, De, Shaikh and Sengupta [1] introduced the notion of LP-Sasakian manifolds with a coefficient α, which generalizes the notion of LP-Sasakian manifolds.

In the present paper we study pseudo projectively flat LP-Sasakian manifold with a coefficient α. Here we prove that in a pseudo projectively flat LP-Sasakian manifolds with a coefficient α the characteristic vector field is a concircular vector field if and only if the manifold is η-Einstein and pseudo projectively flat LP-Sasakian manifold with a coefficient α is a manifold of constant curvature if the scalar curvature r is a constant.
2. Preliminaries. Let M be the n-dimensional differential manifold endowed with a $(1,1)$ tensor field ϕ, a contravariant vector field ξ, a covariant
vector field η and a Lorentzian metric g of type (0,2) such that for each point $p \in M$, the tensor $g_{p}: T_{p} M \times T_{p} M \rightarrow R$ is a non-degenerate inner product of signature $(-,+,+, \ldots,+)$, where $T_{p} M$ denotes the tangent vector space of M at p and R is the real number space, which satisfies

$$
\begin{equation*}
\eta(\xi)=-1, \quad \phi^{2} X=X+\eta(X) \xi \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
g(X, \xi)=\eta(X), \quad g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

for all vector fields X and Y. Then such a structure (ϕ, ξ, η, g) is termed as Lorentzian almost paracontact structure and the manifold M with the structure (ϕ, ξ, η, g) is called Lorentzian almost paracontact manifold M [2]. In the Lorentzian almost paracontact manifold M, the following relations hold [2]:

$$
\begin{gather*}
\phi \xi=0, \quad \eta(\phi X)=0 \tag{2.3}\\
\omega(X, Y)=\omega(Y, X) \tag{2.4}
\end{gather*}
$$

where $\omega(X, Y)=g(X, \phi Y)$. In the Lorentzian almost paracontact manifold M, if the relations

$$
\begin{align*}
\left(\nabla_{Z} \omega\right)(X, Y)=\alpha[(g(X, Z) & +\eta(X) \eta(Z)) \eta(Y) \tag{2.5}\\
& +(g(Y, Z)+\eta(Y) \eta(Z)) \eta(X)]
\end{align*}
$$

and

$$
\begin{equation*}
\omega(X, Y)=\frac{1}{\alpha}\left(\nabla_{X} \eta\right)(Y) \tag{2.6}
\end{equation*}
$$

hold, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g, then M is called an LP-Sasakian manifold with a coefficient $\alpha[1]$. An LP-Sasakian manifold with coefficient 1 is an LPSasakian manifold [2].

If a vector field V satisfies the equation of the following form:

$$
\nabla_{X} V=\beta X+T(X) V
$$

where β is a non-zero scalar function and T is a covariant vector field, then V is called a torse-forming vector field [5].

In a Lorentzian manifold M, if we assume that ξ is a unit torse-forming vector field, then

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\alpha[g(X, Y)+\eta(X) \eta(Y)] \tag{2.7}
\end{equation*}
$$

where α is a non-zero scalar function. Hence the manifold admitting a unit torse-forming vector field satisfying (2.7) is an LP-Sasakian manifold with a coefficient α. And, if η satisfies

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\varepsilon[g(X, Y)+\eta(X) \eta(Y)], \quad \varepsilon^{2}=1 \tag{2.8}
\end{equation*}
$$

then M is called an LSP-Sasakian manifold [2]. In particular, if α satisfies (2.7) and the equation of the following form:

$$
\begin{equation*}
\alpha(X)=P \eta(X), \quad \alpha(X)=\nabla_{X} \alpha \tag{2.9}
\end{equation*}
$$

where P is a scalar function, then ξ is called a concircular vector field.
Let us consider an LP-Sasakian manifold M with the structure (ϕ, ξ, η, g) and with a coefficient α. Then we have the following relations [1]:

$$
\begin{align*}
\eta(R(X, Y) Z)= & -\alpha(X) \omega(Y, Z)+\alpha(Y) \omega(X, Z) \\
& +\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{2.10}
\end{align*}
$$

and

$$
\begin{equation*}
S(X, \xi)=-\psi \alpha(X)+(n-1) \alpha^{2} \eta(X)+\alpha(\phi X) \tag{2.11}
\end{equation*}
$$

where R, S denote respectively the curvature tensor and the Ricci tensor of the manifold and $\psi=\operatorname{Trace}(\phi)$.

We now state the following results, which are used in the later section.
Lemma 2.1 ([1]). In an LP-Sasakian manifold M with a non-constant coefficient α, one of the following cases occurs:
i) $\psi^{2}=(n-1)^{2}$
ii) $\alpha(Y)=-P \eta(Y)$,
where $P=\alpha(\xi)$.
Lemma 2.2 ([1]). In a Lorentzian almost paracontact manifold $M(\phi, \xi, \eta, g)$ with its structure (ϕ, ξ, η, g) satisfying $\omega(X, Y)=\frac{1}{\alpha}\left(\nabla_{X} \eta\right)(Y)$, where α is a non-zero scalar function, the vector field ξ is torse-forming if and only if the relation $\psi^{2}=(n-1)^{2}$ holds.
3. Pseudo projectively flat LP-Sasakian manifold with a coefficient $\boldsymbol{\alpha}$. Let us consider a pseudo projectively flat LP-Sasakian manifold $M(n>3)$ with a coefficient α. First suppose that α is not constant. Then since the pseudo projective curvature tensor vanishes, the curvature tensor ${ }^{\prime} R$ satisfies [4]

$$
\begin{align*}
{ }^{\prime} R(X, Y, Z, W) & =-\frac{b}{a}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)] \\
& +\frac{r}{n}\left[\frac{1}{n-1}+\frac{b}{a}\right][g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{3.1}
\end{align*}
$$

and

$$
{ }^{\prime} R(X, Y, Z, W)=g(R(X, Y) Z, W)
$$

where a, b are constants such that $a, b \neq 0$ and $a+b(n-1) \neq 0, r$ is the scalar curvature of the manifold. Putting $W=\xi$ in (3.1) and then using
(2.10) and (2.11), we get

$$
\begin{align*}
-\alpha(X) \omega(Y, Z) & +\alpha(Y) \omega(X, Z)+\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \\
= & -\frac{b}{a}[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \tag{3.2}\\
& +\frac{r}{n}\left[\frac{1}{n-1}+\frac{b}{a}\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]
\end{align*}
$$

Again if we put $X=\xi$ in (3.2) and using (2.3) and (2.11), we obtain

$$
\begin{align*}
S(Y, Z)= & {\left[-\frac{a}{b} \alpha^{2}+\frac{a r}{b n(n-1)}+\frac{r}{n}\right] g(Y, Z) } \\
& +\left[-\frac{a}{b} \alpha^{2}-(n-1) \alpha^{2}+\frac{a r}{b n(n-1)}+\frac{r}{n}\right] \eta(Y) \eta(Z) \tag{3.3}\\
& +\psi \alpha(Z)-\alpha(\phi Z) \eta(Y)-\frac{a}{b} P \omega(Y, Z)
\end{align*}
$$

where $P=\alpha(\xi)$.
If an LP-Sasakian manifold M with the coefficient α satisfies the relation

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

where a, b are the associated functions on the manifold, then the manifold M is called an η-Einstein manifold. Then we have [1]

$$
\begin{align*}
S(X, Y)= & {\left[\frac{r}{n-1}-\alpha^{2}-\frac{P \psi}{n-1}\right] g(X, Y) } \tag{3.4}\\
& +\left[\frac{r}{n-1}-n \alpha^{2}-\frac{n P \psi}{n-1}\right] \eta(X) \eta(Y)
\end{align*}
$$

Putting $X=Y=e_{i}$, in (3.4), where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at a point of the manifold and taking summation over $1 \leq$ $i \leq n$, we get

$$
\begin{equation*}
r=n(n-1) \alpha^{2}+n \psi P \tag{3.5}
\end{equation*}
$$

By virtue of (3.3) and (3.4) we get

$$
\begin{align*}
{\left[\frac{\alpha^{2}}{b}(a-b)\right.} & \left.+\frac{r(b-a)}{n(n-1) b}-\frac{P \psi}{(n-1)}\right] g(Y, Z)-\psi \alpha(Z)-\alpha(\phi Z) \eta(Y) \\
& +\left[\frac{\alpha^{2}}{b}(a-b)+\frac{r(b-a)}{n(n-1) b}-\frac{n P \psi}{(n-1)}\right] \eta(Y) \eta(Z) \tag{3.6}\\
& +\frac{a}{b} P \omega(Y, Z)=0
\end{align*}
$$

Putting $Y=\xi$ in (3.6), we obtain

$$
\psi \alpha(Z)-\alpha(\phi Z)=-\psi P \eta(Z)
$$

for all Z. Replace Z by Y in the above equation, we get

$$
\begin{equation*}
\psi \alpha(Y)-\alpha(\phi Y)=-\psi P \eta(Y) \tag{3.7}
\end{equation*}
$$

for all Y. Using (3.7) in (3.6) and then by virtue of (3.5) we get

$$
\begin{equation*}
P \frac{a}{b}\left[\frac{\psi}{n-1}[g(Y, Z)+\eta(Y) \eta(Z)]+\omega(Y, Z)\right]=0 \tag{3.8}
\end{equation*}
$$

If $P=0$, then from (3.7) we have $\alpha(\phi Y)=\psi \alpha(Y)$. Thus ψ is equal to ± 1 as ψ is an eigenvalue of the matrix (ϕ). Hence, by virtue of Lemma 2.1, we get $\alpha(Y)=0$ for all Y and so α is constant, which contradicts our assumption.

Consequently, we have $P \neq 0$ and hence from (3.8) we get

$$
\begin{equation*}
\frac{a}{b}\left[\frac{\psi}{n-1}[g(Y, Z)+\eta(Y) \eta(Z)]+\omega(Y, Z)\right]=0 \tag{3.9}
\end{equation*}
$$

Putting $Y=\phi Y$ in (3.9) and then using (2.3), we obtain

$$
\begin{equation*}
\frac{a}{b}\left[\frac{\psi}{n-1} \omega(Y, Z)+[g(Y, Z)+\eta(Y) \eta(Z)]\right]=0 \tag{3.10}
\end{equation*}
$$

Combining (3.9) and (3.10), we get

$$
\left\{\psi^{2}-(n-1)^{2}\right\}[g(Y, Z)+\eta(Y) \eta(Z)]=0
$$

which gives by virtue of $n>1$

$$
\begin{equation*}
\psi^{2}=(n-1)^{2} \tag{3.11}
\end{equation*}
$$

Hence Lemma 2.2 proves that ξ is torse-forming.
We have

$$
\left(\nabla_{X} \eta\right)(Y)=\beta\{g(X, Y)+\eta(X) \eta(Y)\}
$$

Then from (2.6) we get

$$
\omega(X, Y)=\frac{\beta}{\alpha}\{g(X, Y)+\eta(X) \eta(Y)\}=g\left(\frac{\beta}{\alpha}(X+\eta(X) \xi), Y\right)
$$

and $\omega(X, Y)=g(\phi X, Y)$.
Since g is non-singular, we have

$$
\phi(X)=\frac{\beta}{\alpha}(X+\eta(X) \xi)
$$

and

$$
\phi^{2}(X)=\left(\frac{\beta}{\alpha}\right)^{2}(X+\eta(X) \xi)
$$

It follows from (2.1) that $\left(\frac{\beta}{\alpha}\right)^{2}=1$ and hence, $\alpha= \pm \beta$. Thus we have

$$
\phi(X)= \pm(X+\eta(X) \xi)
$$

By virtue of (3.7) we see that $\alpha(Y)=-P \eta(Y)$, where $P=\alpha(\xi)$. Thus, we conclude that ξ is a concircular vector field. Conversely, we suppose that
ξ is a concircular vector field. Then we have the equation of the following form:

$$
\left(\nabla_{X} \eta\right)(Y)=\beta\{g(X, Y)+\eta(X) \eta(Y)\}
$$

where β is a certain function and $\nabla_{X} \beta=q \eta(X)$ for a certain scalar function q. Hence by virtue of (2.6) we have $\alpha= \pm \beta$. Thus

$$
\begin{gathered}
\Omega(X, Y)=\varepsilon\{g(X, Y)+\eta(X) \eta(Y)\}, \quad \varepsilon^{2}=1, \\
\psi=\varepsilon(n-1), \quad \nabla_{X} \alpha=\alpha(X)=p \eta(X), \quad p=\varepsilon q .
\end{gathered}
$$

Using these relations in (3.3) and (3.7), it can be easily seen that M is η-Einstein. Thus we can state the following:

Theorem 3.1. In a pseudo projectively flat LP-Sasakian manifold M ($n>$ 1) with a non-constant coefficient α, the characteristic vector field ξ is a concircular vector field if and only if M is η-Einstein.

Next we consider the case where the coefficient α is constant. In this case the following relations hold:

$$
\begin{gather*}
\eta(R(X, Y) Z)=\alpha^{2}\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \tag{3.12}\\
S(X, \xi)=(n-1) \alpha^{2} \eta(X) \tag{3.13}
\end{gather*}
$$

Putting $W=\xi$ in (3.1) and then using (3.12) and (3.13), we get

$$
\begin{align*}
a \cdot \alpha^{2} & {[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]+b[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] } \\
& -\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]=0 \tag{3.14}
\end{align*}
$$

Again putting $X=\xi$ in (3.14) we get by virtue of (3.13) that

$$
\begin{align*}
S(Y, Z)= & {\left[\frac{r}{n}\left(1+\frac{a}{b(n-1)}\right)-\frac{a}{b} \alpha^{2}\right] g(Y, Z) } \\
& +\frac{(a+b(n-1))}{b}\left[\frac{r}{n(n-1)}-\alpha^{2}\right] \eta(Y) \eta(Z) \tag{3.15}
\end{align*}
$$

Hence we can state the following:
Theorem 3.2. A pseudo projectively flat LP-Sasakian manifold $M(n>1)$ with a constant coefficient α is an η-Einstein manifold.

Differentiating (3.15) covariantly along X and making use of (2.6) we get

$$
\begin{aligned}
\left(\nabla_{X} S\right)(Y, Z)= & \frac{d r(X)}{n-1}\left(1+\frac{a}{b(n-1)}\right)[g(Y, Z)+\eta(Y) \eta(Z)] \\
& +\frac{\alpha(a+b(n-1))}{b}\left[\frac{r}{n(n-1)}-\alpha^{2}\right] \\
& \times[\omega(X, Y) \eta(Z)+\omega(X, Z) \eta(Y)]
\end{aligned}
$$

where $d r(X)=\nabla_{X} r$. This implies that

$$
\begin{align*}
\left(\nabla_{X} S\right)(Y, Z)- & \left(\nabla_{Y} S\right)(X, Z) \\
= & \frac{d r(X)}{n-1}\left(1+\frac{a}{b(n-1)}\right)[g(Y, Z)+\eta(Y) \eta(Z)] \\
& -\frac{d r(Y)}{n-1}\left(1+\frac{a}{b(n-1)}\right)[g(X, Z)+\eta(X) \eta(Z)] \tag{3.16}\\
& +\frac{\alpha(a+b(n-1))}{b}\left[\frac{r}{n(n-1)}-\alpha^{2}\right] \\
& \quad \times[\omega(X, Z) \eta(Y)-\omega(Y, Z) \eta(X)]
\end{align*}
$$

On the other hand, in our case, since we have $\left(\nabla_{X} \bar{P}\right)(X, Y) Z=0$, we get $\operatorname{div} \bar{P}=0$, where "div" denotes the divergence. So for $n>1, \operatorname{div} \bar{P}=0$ gives

$$
\begin{align*}
& \left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z) \\
& \quad=\frac{1}{n(a+b)}\left[\frac{a+(n-1) b}{n-1}\right][g(Y, Z) d r(X)-g(X, Z) d r(Y)] \tag{3.17}
\end{align*}
$$

It follows from (3.16) and (3.17) that

$$
\begin{align*}
\frac{1}{n(a+b)}[& \left.\frac{a+(n-1) b}{n-1}\right][g(Y, Z) d r(X)-g(X, Z) d r(Y)] \\
= & \frac{d r(X)}{n-1}\left(1+\frac{a}{b(n-1)}\right)[g(Y, Z)+\eta(Y) \eta(Z)] \\
& +\frac{d r(Y)}{n-1}\left(1+\frac{a}{b(n-1)}\right)[g(X, Z)+\eta(X) \eta(Z)] \tag{3.18}\\
& +\frac{\alpha(a+b(n-1))}{b}\left[\frac{r}{n(n-1)}-\alpha^{2}\right] \\
& \quad \times[\omega(X, Z) \eta(Y)+\omega(Y, Z) \eta(X)] .
\end{align*}
$$

If r is constant, then from (3.18) we obtain

$$
\frac{\alpha(a+b(n-1))}{b}\left[\frac{r}{n(n-1)}-\alpha^{2}\right]=0 .
$$

Since $a+b(n-1) \neq 0$, the above equation gives

$$
\begin{equation*}
r=n(n-1) \alpha^{2} \tag{3.19}
\end{equation*}
$$

Now substituting (3.15) in (3.1) we get

$$
\begin{align*}
{ }^{\prime} R(X, Y, Z, W)= & \alpha^{2}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
+ & {\left[\frac{(a+b(n-1))}{a}\left(\frac{r}{n(n-1)}-\alpha^{2}\right)\right] } \tag{3.20}\\
& \times[g(Y, W) \eta(X) \eta(Z)-g(X, W) \eta(Y) \eta(Z)] .
\end{align*}
$$

Hence by using (3.19) in (3.20) it follows that,

$$
{ }^{\prime} R(X, Y, Z, W)=\alpha^{2}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] .
$$

This shows that the manifold is of constant curvature. Thus we can state the following:

Theorem 3.3. In a pseudo projectively flat LP-Sasakian manifold M ($n>$ 1) with a constant coefficient α, if the scalar curvature r is constant, then M is of constant curvature.

Acknowledgement. The authors are grateful to referee and to Prof. Stanisław Prus for their valuable suggestions in improving the paper.

References

[1] De, U. C., Shaikh, A. A. and Sengupta, A., On LP-Sasakian manifolds with a coefficient α, Kyungpook Math. J. 42 (2002), 177-186.
[2] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151-156.
[3] Mihai, I., Rosca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis (Kazimierz Dolny, 1991), World Sci. Publ., River Edge, NJ, 1992, 155-169.
[4] Prasad, Bhagwat, On pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc. 94(3) (2002), 163-166.
[5] Yano, K., On the torse-forming direction in Riemannain spaces, Proc. Imp. Acad. Tokyo 20 (1944), 340-345.
C. S. Bagewadi

Department of Mathematics
and Computer Science
Kuvempu University
Jnana Sahyadri-577 451, Shimoga
Karnataka, India
e-mail: prof_bagewadi@yahoo.co.in
Venkatesha
Department of Mathematics
and Computer Science
Kuvempu University
Jnana Sahyadri-577 451, Shimoga
Karnataka, India
e-mail: vens_2003@rediffmail.com

Received June 11, 2007
D. G. Prakasha

Department of Mathematics
and Computer Science
Kuvempu University
Jnana Sahyadri-577 451, Shimoga
Karnataka, India
e-mail: prakashadg@gmail.com

