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Properties of harmonic conjugates

ABSTRACT. We give a new proof of Hardy and Littlewood theorem concerning
harmonic conjugates of functions u such that [ [u(z)|PdA(z) < oo, 0 <p < 1.
We also obtain an inequality for integral means of such harmonic functions .

Let D = {z € C: |z] < 1} and dA be the Lebesgue measure normalized
so that A(D) = 1. The harmonic Hardy space h?, 0 < p < 0o, consists of
all real-valued functions u harmonic in D whose integral means

1
1 (27 . »
M (ry ) = {% /0 |u(re’9)|pd9}

are bounded. The harmonic Bergman space a? is the collection of all real-
valued harmonic functions « in D for which the integral

ul[? = /D u(2)IPdA(z)

is finite. For a real-valued function v harmonic in D we define the harmonic
conjugate as the function v with v(0) = 0 such that f = u + iv is analytic
in D. By the theorem of M. Riesz, if 1 < p < co and u € hP, then v € hP
and M,(r,v) < CM,(r,u) where C depends only on p. For 0 < p <1 or
p = oo the theorem fails.
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It follows immediately from the theorem of M. Riesz that for every p in
the range 1 < p < oo if u € a”, then v € a? and ||v||, < C||ul||,. However,
in the space a? the last inequality holds also for 0 < p < 1. This result was
first stated by Hardy and Littlewood [4] and its proof was indicated there.
Thus the following theorem holds.

Theorem HL. Let 0 < p < co. If u € aP, then its conjugate v € aP and
llv|lp < Cllullp, where C depends only on p.

In [4] Watanabe presented the proof of the above theorem, when 0 < p <
1. There are some gaps and the proof seems to be incomplete. For example
the inequality in line 9 from the above on page 53 is not proved. We note
that in the case when 0 < p < 1 and » is harmonic in D the integral mean
M, (r, u) need not be monotonically increasing function of r. Moreover, the
application of Lemma 4 in [1] at the end of the proof is not explained. In
this paper we give a complete detailed proof of Theorem HL for the case
0 < p < 1, shorter than that in [4]. Throughout this paper C' denotes a
general positive constant which may differ from line to line.

Proof of Theorem HL for the case when 0 < p < 1. Let f =u+
be analytic in D and assume that v(0) = 0. We start with the following
inequality proved in [1] p. 411.

(1) olzf () <07t (ulr + by )] + [u(r, 0 + B)] + 2Ju(r, 0)]) + Aruon,

where z = e, 0 < r < 1, u(r,0) = u(re?),oc = o(r) = Vr —r, h =
no, A=732°,2mym=2 = 4/(1 — 2n), n is any positive number less than
1. Moreover, p = pu(r,0) = max |f'(2)| and v denotes the circle centered at

the point re® and the radius o.
Since 0 < p < 1, we get from (1)
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It was shown in [1] p. 411 that
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Moreover, an easy calculation shows that o(r) < 4o (ri). Now multiplying
both sides of inequality (2) by 2r and integrating with respect r give

27
/ / rPrP|f! (re') [Pdordr
27
_p<// |u(r + h,0)[Pdlrdr
™ Jo Jo
1 1 21
+ et / / |u(r,9)\pd0rdr>
T™Jo Jo

1 1 pr27 1P R L, 1
+CnP— o(rs) ra|f'(rie”)[Pdordr.
m™Jo Jo

Substituting t* = 7 in the last integral yields

2T
/ / rPrP|f! (re') [Pdordr
2T
P (// |u(r + h,0)[Pdbrdr
™Jo Jo
1 1 21
+ (2p+1)/ / \u(r,@)\%&rdr)
™Jo Jo

1 2m
+opt / / (PP |f (te®) P dbtdt.
m™Jo Jo

It is clear that r + h =7 +n(y/r—7) <lon0<r <land0<n < 1.
Moreover, the function g(r) = r + n(y/r — r) is increasing in the interval
0 < 7 < 1. Substituting » + h = t? in the first integral on the right hand
side of (3) we get

1 1 2m
— / / |u(r + h, 0)[PdOrdr
m™Jo Jo

2 1t —n+/n*+40
= - p

(1—77)

X i/ +1 | tdodt
n? 4+ 4(1 — n)t?
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1 27 \/4—
_ 4 1/ (2, 0)|P ( VAl i ) dotdt

2—nmJo Jo 2(1-n)
4 1 1 27 _ 4(1 — t2
g/ (2, oy [ ZIEn VAL =N e
2—nmJo Jo 2(1—mn)

1 27
_ (2_17;‘(1_77)71( /O /0 (2, 0)[P£2dotdt
2) 1 1 27 »
_ (2_77)(1_””/0 /0 lu(t, 0)Pdotdt.

By the assumption u € a” and (3) we get
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1
Now choosing 7 so that n < C" » we get

27
(4) (1—-CnP) / / rPrP| f( re )\pderdr < CJull%,

We note that the convergence of the above integral implies the convergence

of
1 1 2 )
/ / (1 —7)P|f! (re) [Pdordr,
T™Jo Jo

which means that f € AP, see e.g. Lemma 4 in [4]. O
Corollary. Ifu € a?, u(0) =0, 0 <p <1, then

[lullar

My(r,u) < C———"—,
(1—r)r

where a constant C' depends only on p.

Proof. Let f and ¢ be as in our proof of Theorem HL and assume that
f(0) = 0. It is clear that the function o is monotonically increasing in
(O, %) and monotonically decreasing in (i, 1). Since M,y (r, f) is increasing
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function of r on (0, 1), using the Chebyshev inequality (see e.g. [3]) we get

/ /27r PrP| £ (ret?)|Prdodr
/ / " PP | (rel®) Prdfdr + / / 7 )PP f (ret®) Prddr

2 2w
> C'/ / (re'®)|Prdodr + / / (1—=v7r)?If (re?)[Prdodr
21 ) 2 A
o[ [Ta-oreetpanig = o [ / (v Prdgar,
0 JO 0 JO

where the last inequality follows from e.g. Lemma 4 in [4]. Thus

1 27
MpP(r,u)(1—7) < MJ(r, f)(1 —7r) < / 21/ \f(tew)]”detdt < C|ulf, .
r ™ Jo
]
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