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Best approximation of coincidence points
in metric trees

Abstract. In this work we present results on fixed points, pairs of coinci-
dence points and best approximation for ε-semicontinuous mappings in metric
trees. It is a generalization of the similar properties of upper and almost lower
semicontinuous mappings.

1. Introduction. In 2007 W. Kirk and B. Panyanak showed the best ap-
proximation for upper semicontinuous set-valued mappings in a nonempty
closed convex and geodesically bounded subset of a complete metric tree
(see [4]). On the assumption of an almost lower semicontinuity of mappings
J. Markin in [6] obtained the same result. Our main goal is to give a gen-
eralization of these theorems. Moreover, some results of the existence of
coincidence points are presented.

2. Definitions. Let (M,d) be a metric space and let us fix x, y ∈ M . If
there is a compact interval [a, b] ⊂ R and an isometric embedding φ : [a, b] →
M with φ(a) = x and φ(b) = y, then the image φ([a, b]) is called a metric
segment and it is denoted by [x, y].
The metric space M is called a metric tree if the following conditions
hold:
(a) for each x, y ∈ M there is a unique metric segment [x, y].
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(b) if [x, y] ∩ [y, z] = {y}, then [x, z] = [x, y] ∪ [y, z].
The definition implies (see [3, Definition 2.1]) that
(c) for all x, y, z ∈ M there is w ∈ M such that [x, z] ∩ [y, z] = [w, z].
Let C be a subset of the metric treeM . C is called convex if [x, y] ⊂ C for
all x, y ∈ C. The set C is called geodesically bounded if there is no geodesic
ray in C, i.e., an isometric image of [0,∞). By Nε(C) (N0

ε (C)) we will
denote the set {x ∈ M | d(x, C) ≤ ε} ({x ∈ M | d(x,C) < ε}). Moreover,
we will write shortly Nε(x) (or N0

ε (x)) instead of Nε({x}) or N0
ε ({x}).

Let X be a topological space and Y – a metric space. The set-valued
mapping F : X → 2Y with nonempty values is called almost lower semicon-
tinuous at x0 ∈ X if for each ε > 0 there is an open neighbourhood U ⊂ X
of x0 such that ⋂

x∈U

Nε(F (x)) 6= ∅

(see [6]). Let F : X → 2Y be a set-valued mapping with nonempty values.
F is called upper semicontinuous at x0 ∈ X if for each open V ⊂ Y such
that F (x0) ⊂ V there exists an open set U ⊂ X which contains x0 such
that

F (U) ⊂ V

(see [2, Definition 1.4.1, p. 38]).
Now we introduce a weaker notion of semicontinuity. A set-valued map-
ping F : X → 2Y with nonempty values is called ε-semicontinuous at x0 ∈ X
if for each ε > 0 there is an open neighbourhood U of x0 such that

F (x) ∩Nε(F (x0)) 6= ∅
for all x ∈ U . Clearly, if F is almost lower semicontinuous at x0 and ε is
a positive number then there exists an open neighbourhood U of x0 with

(1) Nε/3(F (x)) ∩Nε/3(F (x0)) 6= ∅, x ∈ U.

So for each x ∈ U there are z belonging to the set in (1), y ∈ F (x) and
y0 ∈ F (x0) such that

d(y, z) ≤ ε

2
and d(y0, z) ≤ ε

2
.

Hence d(y, F (x0)) ≤ ε and F (x)∩Nε(F (x0)) 6= ∅. In a similar way one can
check that upper semicontinuous mapping F is ε-semicontinuous. The first
of the examples (see Section 4) shows that the inverse implications are not
true.
In the sequel we will need the following result due to Aksoy and Khamsi
(see Lemma 3.1 and 3.2 in [1], the assumption of the boundedness is super-
fluous):

Proposition 1. Let M be a metric tree and let X ⊂ M be a nonempty
closed convex set. Then:
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(i) for each x ∈ M there is an projection of x onto X, i.e., an exactly
one point PX(x) ∈ X for which d(x, PX(x)) = d(x,X).

(ii) for any x, y ∈ M one of the following cases is satisfied:

PX(x) = PX(y)

or

d(x, y) = d(x, PX(x)) + d(PX(x), PX(y)) + d(PX(y), y).

3. Main results. We recall that for two mappings F : X → 2Y and G :
Y → 2X the composition set-valued mapping G ◦ F : X → 2X is defined as

(G ◦ F )(x) = G(F (x)) =
⋃

y∈F (x)

G(y)

(see e.g. [2, p. 37]).

Lemma 2. Let M and N be metric trees and let X, Y be nonempty closed
convex subsets of M and N , respectively. Assume that F is a set-valued
mapping defined in X with nonempty convex closed values in N . Moreover,
suppose that F̄ : X → 2Y is defined as

F̄ (x) = F (x) ∩ Y

if F (x)∩Y 6= ∅ and, otherwise, a singleton F̄ (x) = {PY (y)} for some point
y ∈ F (x).
If F is ε-semicontinuous then F̄ is also and

(2) d(z, F (x)) = inf
y∈Y

d(y, F (x))

for all z ∈ F̄ (x) and x ∈ X.

Proof. At first we will show that F̄ is well defined. Assume that F (x)∩Y =
∅ and u, v ∈ F (x). By (ii) of Proposition 1 we have PY (u) = PY (v) or
[u, v] = [u, PY (u)] ∪ [PY (u), PY (v)] ∪ [PY (v), v], but the second equality is
impossible since otherwise [PY (u), PY (v)] ⊂ F (x) and then F (x) ∩ Y 6= ∅.
So F̄ (x) is a closed convex set for each x ∈ X and clearly (2) is satisfied.
Moreover, we have that

F̄ (x) = {PY (y) : y ∈ F (x)} .

Now we will prove that if F is ε-semicontinuous, then so is F̄ . Let us
take x0 ∈ X and ε > 0. There is a neighbourhood U of x0 such that for
each x ∈ U one can find z ∈ F (x) for which

d(z, F (x0)) ≤ ε.

But it implies that d(PY (z), F̄ (x0)) ≤ ε, which completes the proof. �
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The above definition of the mapping F̄ is equivalent to the Markin defi-
nition

F̄ (x) = X ∩Nε(F (x)), ε = inf{t > 0 : X ∩Nt(F (x)) 6= ∅}

(see [6, proof of Theorem 4.4]), but it is more useful in the sequel. More-
over, by the proof of the same theorem we obtain that the almost lower
semicontinuity of F implies the same property of F̄ . On the assumption
that F is upper semicontinuous, the upper semicontinuity of F̄ follows from
the proof of [4, Theorem 2.1, p. 684].

Lemma 3. Let M , N be complete metric trees and let F : M → 2N ,
G : N → 2M be set-valued mappings with nonempty convex closed values.
Moreover, suppose that F is ε-semicontinuous with compact values and G
is upper semicontinuous. Then G ◦ F : M → 2M is an ε-semicontinuous
mapping with nonempty convex closed values.

Proof. First we will prove that the mapping G ◦ F is ε-semicontinuous.
For every w ∈ F (x0) we may find δw > 0 such that G(y) ⊂ N0

ε (G(w)) for
all y ∈ Nδw(w). Setting U =

⋃
w∈F (x0) N0

δw
(w) we obtain an open set U

containing F (x0) such that

(3) G(y) ⊂ N0
ε (G(F (x0))), y ∈ U.

Since F (x0) is a compact set, there is δ > 0 with Nδ(F (x0)) ⊂ U . By the
ε-semicontinuity of F one can choose an open neighbourhood V of x0 for
which

F (x) ∩Nδ(F (x0)) 6= ∅, x ∈ V.

Therefore if x ∈ V there is y ∈ F (x) ∩ Nδ(F (x0)). Since y ∈ U we have
(G ◦ F )(x) ∩Nε(G ◦ F (x0)) 6= ∅ by (3).
To show the closedness of G ◦ F (x), x ∈ X, let us take a sequence (un)
for which un ∈ G ◦ F (x) and un → u. We have to show that u ∈ G ◦ F (x).
Obviously one can find a sequence (yn), yn ∈ F (x), such that un ∈ G(yn).
We may assume that yn → y, y ∈ F (x). By Proposition 1.4.8 in [2] the
mapping G is closed, so u ∈ G(y) ⊂ G ◦ F (x).
Finally we will prove the convexity of G ◦ F (x), x ∈ X. Assume that
there are u, v ∈ G ◦ F (x) and w ∈ [u, v] which does not belong to G ◦ F (x).
According to the closedness of G ◦ F (x) one can choose ε > 0 such that

(4) N2ε(w) ∩G ◦ F (x) = ∅.

Let s, t ∈ F (x) be chosen in such a way that u ∈ G(s) and v ∈ G(t). For
each y ∈ [s, t] one can find a number δ(y) > 0 for which

(5)
⋃

z∈Nδ(y)(y)

G(z) ⊂ Nε(G(y)).
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By the compactness of the metric segment [s, t] it follows that there is a finite
set {y1, . . . , yn} such that

(6) [s, t] ⊂
n⋃

k=1

Nδ(yk)(yk).

According to (5) and (6) we have⋃
z∈[s,t]

G(z) ⊂
n⋃

k=1

Nε(G(yk)) =: U.

Now we will show that U is a convex set.
Without loss of generality we may assume that

(7) Nδ(y1)(y1) ∩Nδ(y2)(y2) 6= ∅.

Let p, q ∈ Nε(G(y1))∪Nε(G(y2)). Let us choose a z belonging to the set in
(7). Obviously G(z) ⊂ Nε(G(y1)) ∩ Nε(G(y2)). Assume that r ∈ G(z). It
is clear that [p, q] ⊂ [p, r] ∪ [q, r] ⊂ Nε(G(y1)) ∪Nε(G(y2)). By induction U
is convex and it follows that

w ∈
n⋃

k=1

Nε(G(yk)).

So there is yk ∈ F (x) such that d(w,G(yk)) ≤ ε which contradicts (4). �

The assumption of the compactness of F (x) is an essential condition of
the closedness of values of G ◦ F (see Example 10).

Theorem 4. Let M be a complete metric tree and let X be a nonempty
convex closed and geodesically bounded subset of M . If F : X → 2X is an ε-
semicontinuous set-valued mapping with nonempty convex closed values then
F has a fixed point.

Proof. The first part of the proof is similar to the proof of Theorem 2.1
in [4]. Let x ∈ X and let r(x) = PF (x)(x). If x is not a fixed point, then
d(x, r(x)) > 0. For each t ∈ [x, r(x)] we define ξ(t) as

[x, r(x)] ∩ [x, r(t)] = [x, ξ(t)].

Let
A = {t ∈ [x, r(x)] | ξ(t) ∈ [x, t]} ,

B = {t ∈ [x, r(x)] | ξ(t) ∈ [t, r(x)]} .

Clearly r(x) ∈ A and x ∈ B. The sets A and B are closed. Indeed, let (tn)
be a sequence of elements of B such that tn → t. Assume that t ∈ A \ B.
Then d(t, ξ(t)) = ε > 0. Let n ∈ N be such that d(t, tn) < ε/2. For each
u ∈ F (t) and v ∈ F (tn) we obtain

r(t) ∈ [u, ξ(t)], ξ(t) ∈ [r(t), ξ(tn)], ξ(tn) ∈ [ξ(t), r(tn)], r(tn) ∈ [ξ(tn), v].
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Then we have
[ξ(t), ξ(tn)] ⊂ [u, v]

and finally infz∈F (tn) d(z, F (t)) ≥ d(ξ(t), ξ(tn)) > ε/2 for each n ∈ N suffi-
ciently large which contradicts the ε-semicontinuity of F . The proof for A
is similar.
Since A is compact there is ϕ(x) ∈ [x, r(x)] such that d(x, ϕ(x)) =

inft∈A d(x, t). Moreover, ϕ(x) ∈ A ∩B, which implies that

(8) [x, r(x)] ∩ [x, r(ϕ(x))] = [x, ϕ(x)].

Now suppose that F has not a fixed point in X. Therefore, we have

(9) d(x, ϕ(x)) > 0, x ∈ X.

Let us choose any x0 ∈ X. We define a transfinite sequence (xα)α<Ω such
that

(10) d(x0, xα) =
∑
β<α

dβ

and

(11) d(x0, ϕ(xα)) = d(x0, xα) + d(xα, ϕ(xα))

where Ω is the order type of the set {α | ᾱ ≤ ℵ0} (see [5, p. 20–21]) and
dβ = d(xβ, ϕ(xβ)).
Let α be a limit number. By the geodesically boundedness of X and (10)
the countable sum

∑
β<α dβ is bounded. So there is a sequence of points

xαn such that limn→∞
∑

β<αn
dβ =

∑
β<α dβ and xαn → x̄ ∈ X. Let us

define xα := x̄. Clearly (10) and (11) are satisfied. The proof of (11) is not
different from the proof of the closedness of B.
If α = β + 1 we define xα := ϕ(xβ). By (8) with x = xβ, (10) and (11)
we obtain d(x0, xα) = d(x0, xβ) + d(xβ, xα) =

∑
γ<α dγ and d(x0, ϕ(xα)) =

d(x0, xα) + dα.
Now let us define

(12) m := sup
α<Ω

∑
β<α

dβ.

If m were equal to the infinity, points xα would lie on the geodesic ray.
Hence m < ∞ and one can find a sequence αn for which d(x0, xαn) → m.
Clearly there is α < Ω such that αn < α for each n ∈ N. Moreover,
d(x0, xα) = m what implies that d(x0, xα+1) = d(x0, ϕ(xα)) > m. This
contradicts (12). �

Theorem 5. Let M and X be defined as in Theorem 4. Moreover, suppose
that F : X → 2M is an ε-semicontinuous mapping with nonempty closed
convex values. Then there is a point x̄ ∈ X for which

(13) d(x̄, F (x̄)) = inf
x∈X

d(x, F (x̄)).
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Proof. Let us define F̄ in the same way as in Lemma 2, i.e., F̄ (x) = F (x)∩
X if F (x) ∩ X 6= ∅, and, otherwise, F̄ (x) = {PX(y)}, y ∈ F (x), x ∈ X.
Then the assumptions of Theorem 4 hold for F̄ : X → 2X . Hence there is
x̄ ∈ X such that x̄ ∈ F̄ (x̄).
Let us consider the set F̄ (x̄). If F (x̄) ∩ X 6= ∅, then d(x̄, F (x̄)) = 0 =

infx∈X d(x, F (x̄)) what completes the proof. Otherwise, {x̄} = F̄ (x̄) and

d(x̄, F (x̄)) = inf
x∈X

inf
y∈F (x̄)

d(x, y) = inf
x∈X

d(x, F (x̄)). �

Since each almost lower semicontinuous or upper semicontinuous mapping
is ε-semicontinuous, we obtain the following:

Corollary 6 ([6, Theorem 4.4] and [4, Theorem 2.1]). Let M and X be de-
fined as in Theorem 5. Moreover, suppose that F : X → 2M is an al-
most lower semicontinuous (upper semicontinuous) mapping with nonempty
closed convex values. Then there is a point of the best approximation, i.e.,
x̄ ∈ X such that (13) holds.

Theorem 7. Let M , N be complete metric trees, let X, Y be nonempty
closed convex and geodesically bounded subsets of M and N , respectively,
and let F : X → 2N , G : Y → 2M be set-valued mappings with nonempty
closed convex values. Moreover, suppose that F is a ε-semicontinuous map-
ping with compact values and G is upper semicontinuous. Then there is
a pair (x̄, ȳ) ∈ X × Y of points with

(14) dN (ȳ, F (x̄)) = inf
y∈Y

dN (y, F (x̄)), dM (x̄, G(ȳ)) = inf
x∈X

dM (x,G(ȳ)).

Proof. Let F̄ : X → 2Y and Ḡ : Y → 2X be projections defined in the
same way as in Lemma 2. By Lemma 3 the product Ḡ ◦ F̄ : X → 2X

is a ε-semicontinuous mapping with nonempty closed convex values in X.
According to Theorem 4 one can find a fixed point x̄ ∈ X of Ḡ ◦ F̄ . It
follows that there is ȳ ∈ Y such that

ȳ ∈ F̄ (x̄) and x̄ ∈ Ḡ(ȳ).

The rest of the proof goes in the same way as in Theorem 5. �

The last example (see Example 11) shows that it is not sufficient in The-
orem 7 to assume that the mappings F and G are ε-semicontinuous. In that
case a pair of best approximation does not have to exist.

Theorem 8. Let the sets M , N , X and Y be defined as in Theorem 7
and let F : X → 2N , G : Y → 2M be set-valued mappings with nonempty
closed convex values. Moreover, suppose that F is ε-semicontinuous and G
is almost lower semicontinuous. Then there exists the best approximation
of coincidence points, i.e., a pair (x̄, ȳ) ∈ X × Y for which (14) holds.



120 B. Piątek

Proof. Let us define F̄ : X → 2Y and Ḡ : Y → 2X in the same way as above.
According to [6, Theorem 4.3] there is a continuous selection g : Y → X of
Ḡ. Clearly the product F̄ ◦ g is an ε-semicontinuous set-valued mapping
with nonempty closed convex values. By Theorem 4 there exists a fixed
point ȳ of F̄ ◦ g. The rest of the proof runs as before in Theorem 5. �

4. Examples.

Example 9. Let F : R → 2R be defined as follows

F (x) =


[−1, 0] , x < 0
[0, 1] , x = 0
[1, 2] , x > 0.

Then the mapping F is ε-semicontinuous at x = 0 while F is not upper
semicontinuous nor almost lower semicontinuous.

Example 10. Let us consider the space R2 with a radial metric d, i.e.,

d((x1, y1), (x2, y2)) =

{√
(x1 − x2)2 + (y1 − y2)2, x1y2 = x2y1√
x2

1 + y2
1 +

√
x2

2 + y2
2, otherwise.

and suppose that F ((0, 0)) = N1((0, 0)) which is noncompact.
A mapping G : N1((0, 0)) → 2R2

is defined as

G(x, y) =

{[
(0, 0),

(
0, 1− 1

n

)]
, (x, y) =

(
cos π

n , sin π
n

)
{(0, 0)} , otherwise.

Hence

G ◦ F ((0, 0)) =
⋃

(x,y)∈N1((0,0))

G(x, y) =
{
(0, y) ∈ R2 | 0 ≤ y < 1

}
.

Example 11. Let us consider the space R with standard metric. Let F (1)
be defined by

F (1) = [0, 1]

while G : [0, 1] → R is defined as

G(x) =

{
[0, x], 0 ≤ x < 1
{0} , x = 1.

Therefore d(1, G◦F (1)) = 0 but there is not a pair of the best approximation
because for each x ∈ F (1) we have d(1, G(x)) > 0.
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MA, 1990.
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