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Sufficient conditions
for quasiconformality of harmonic mappings
of the upper halfplane onto itself

ABSTRACT. In this paper we introduce a class of increasing homeomorphic
self-mappings of R. We define a harmonic extension of such functions to the
upper halfplane by means of the Poisson integral. Our main results give some
sufficient conditions for quasiconformality of the extension.

1. Introduction. Let F' be a complex-valued sense-preserving diffeomor-
phism of the upper halfplane C* := {z € C : Im z > 0} onto itself, where C
stands for the complex plane. Then the Jacobian

(1.1) Jp = |0F* — |0F)?
is positive on C* and so the function
0F (2)| + [0F (2)]
(1.2) Ct 32+ Dp(z) = ~
|0F ()| — |0F(2)|

is well defined. We recall that Dp(z) is called the maximal dilatation of F at
z € C*. Here and in the sequel 8 == (9,—i0y)/2 and 0 := (9, +i0,)/2 stands
for the formal derivatives operators. From the analytical characterization
of quasiconformal mappings (see [3]) it follows that for any K > 1, F is
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K-quasiconformal if and only if
(1.3) Dp(z) <K, zecCt.

Assume now that F is quasiconformal, i.e. F' satisfies (1.3) for some K > 1.
Then F has a unique homeomorphic extension F* to the closure Ct :=
CTUR, R :=RU{co} (see [3]). The famous result of Beurling and Ahlfors
(see [1]) says that a function f of R onto itself is the restriction of F* if and
only if f is quasisymmetric, i.e. f is a strictly increasing homeomorphism,
such that

1) -1

M@ - fa—1)
for some constant M > 1 and for all x € R and ¢ > 0.

Assume additionally that F' is a harmonic mapping, i.e. F' satisfies the
Laplace equation 90F = 0 on C*. Kalaj and Pavlovi¢ proved in [2] that an
increasing homeomorphism f of R onto itself is the restriction of £ if and
only if it is biLipschitz and the Hilbert transformation of f’ is bounded.

Following the idea of Beurling and Ahlfors we are going to find an effec-
tive extension of f to F*. For f € F, where F is considered in Section 2,
we provide a construction of the harmonic extension H|[f] defined in Defini-
tion 3.1 by means of the Poisson integral. The main purpose of this paper is
to give sufficient conditions on f € F, that guarantee quasiconformality of
HIf]. In Section 3 we show that H[f] is a homeomorphism of C* onto itself
provided f € F has the biLipschitz property (3.2), cf. Proposition 3.2. In
Section 4 we provide various auxiliary estimates dealing with partial deriva-
tives of H[f]. Applying them we are able to estimate the maximal dilatation
Dyy) of H[f] in case f € F satisfies the biLipschitz property (3.2) and f’
is a Dini-continuous function with respect to spherical distance (4.3). This
is the main result of the paper and is stated in Theorem 5.2. In particu-
lar, if f’ is Holder-continuous with respect to spherical distance we obtain
estimate of Dy given in Theorem 5.3.

(1.4)

2. Preliminary notes. Let Hom™ (R) be the set of all increasing real line
homeomorphisms onto itself. For a € R we define

Fa={f € Hom" (R) : I(f,a) < 400},
where
| f(t) — atf
I(f, a) = / W dt
We define also
F =] Fa
a>0
The following properties hold.
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Proposition 2.1. Ifa < 0, then F, = 0.

Proof. Let f € Hom™ (R). There exists T' > 0 such that f(t) > 0 for ¢t > T.
Hence, if a < 0, then |f(t) — at| > f(t) + |a|t for t > T, which implies that

+o0
1/, a) Z/T Wdt.

Since the last integral is divergent, f ¢ F, and we have a contradiction
which completes the proof. O

Proposition 2.2. If a # b, then F, N F, = 0.
Proof. Let f € F, N Fy, a #b. Observe, that

[N g [l U

T e =) 1+t2 I
But the first integral is divergent, thus we have a contradiction, which com-
pletes the proof. O

Remark 2.3. By Proposition 2.2, for every fixed f € F there exists exactly
one constant a > 0, such that I(f,a) < 4o0.

Proposition 2.4. If f € F,, then f € F,, where f(t) = —f(—t), t e R.
Proof. Consider I(f,a). Substituting s := —t we have

: ~ |f(=5) +as] /+°° |~ f(=5) — as|
I —_ — —I
(f’ CL) /+oo 1+ s2 ds o0 1+ s2 ds (f7 )
Proposition 2.5. If f € F, then liminf; . f(t)/t > 0.

Proof. Assume that liminf; . f(¢)/t < 0, then there exists a sequence
{tn} and T € R such that ¢, — 400 and f(¢,) < 0 for n > T. But
f € Hom™ (R), i.e. f is an increasing homeomorphism of R onto R, thus we
have a contradiction and the proof is completed. O

Proposition 2.6. If f € F, then liminf, ,_ f(t)/t > 0.

Proof. Consider f(t) = —f(—t). By Proposition 2.4 we have f e F, and
then by Proposition 2.5 we have

hmlnff( )/t > 0.

t—+o0

This is equivalent to liminfy_,_ o, f(t)/t > 0, which completes the proof. [

Proposition 2.7. If f € F,, then a is an accumulation point of f(t)/t in
+o0.

Proof. Consider f € F, satisfying the condition

t
Vr>oVs>0Ti>T o al < 4.
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If we put 7' :=n and ¢ := 1/n, then we have
f®)
t

vn>0§|th

‘ 1
—al < —.
n
This means that a is an accumulation point of f(t)/t in +oc.

t
Assume that a is not an accumulation point of f(¢)/t in +00. This implies
that

ft
Ir>0ds>0Vi>T o _ al > 9.
Hence
“+o0 —+o00
t t ot
I(f,a)Z/ |f()+a|dt2/ dt.
T 1+ t2 r 1+1t2
Since the last integral is divergent, this contradicts the assumption f € F,,
which completes the proof. ]

Proposition 2.8. If f € F,, then a is an accumulation point of f(t)/t in
—00.

Proof. Consider f(t) := —f(—t). By Proposition 2.4 we have f € F, and
by Proposition 2.7 we obtain that a is an accumulation point of f(t)/t in
+oo. This is equivalent to that a is an accumulation point of f(¢)/t in —oo
and completes the proof. O

Theorem 2.9. If f € F,, then lim;_ 4 f(t)/t = a.

Proof. Note, that by Proposition 2.7 a is the accumulation point of f(t)/t
in +00. Assume that there exists b € R, b # a which is an accumulation
point of f(t)/t in +o0, i.e. there exists a sequence {t,}, t, > 0, t, — 400,
such that

f(tn)

n

Ve>037Vn>n

—b’<5.

Set ¢ := |a — b|/3 and denote
2b + at
Sp = .
" 240"
In view of Proposition 2.5 we may restrict our consideration to a > 0 and
b>0.
If b > a > 0, then s, > t, and for ¢t € [t,,s,] we have the following

estimate
2b+a ~ (b—a)(2b+a)
f(t)—ath(tn)—aSn><b—6—a >tn—w

We chose from {t,} a subsequence {t,, }, k =1,2,3,... such that ¢, =15
and for all k£ holds

t, > 0.

tn,C+1 > Spy.-
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Hence, for t € [t,, sp] we have

f) —at] [t |f(t) —at| oo f(t) — at|
l(f:0) 2 / 1+t2dt/0 1+ dH/t e U

nq

psr | f(t) — at] — at]|
dt > dt
/t B Z/ 1+t2

+oo
k(b —a)(2b+ a)ty,
= / 320+ b)(1 1 £2,)

n=1

+oo
- (b - a)(2b + a’)(snk - tnk)tnk
_nz::l 3(2a +b)(1+s2,)
=GP+ a),
=2 3[(2a + )2+ (2b +a)2t2 ]’

n=1

Observe, that

(b—a)*(2b+ a)tZ,  (b—a)?
(2.1) S0 02 @bt a)22] 3@ ra)

If a >b >0, then s, < t, and for ¢t € [sy,t,] we have the following
estimate

2b+a (b—a)(2b+a)
) —at < f(t,) —as, < [b+e— t, =~ T .
ft) —at < f(t,) —as << +e a2a+b> 320+ 1) <0
We chose from {s,} a subsequence {s,, }, k =1,2,3,... such that s,, = s5

and for all k£ holds
Snpyr > tny -

Hence, for t € [sy, t,] we have

I(f,a)2/0+oo ‘f()_at’dt:/osn1 ’f()_at‘dt+/+oo|f(t)_at’dt

1+12 1+12 N
-3 [ = / 1£() —at]
- s o 142
n=1"°""g

Z*"" /tnk (a—b>(2b+a>nk 4 Z( — b)(2b+ a) (tny, — Sny)tn,

- 3(2a+b)(1+12)) — 3(2a—|—b)(1+t%k)

n=1

(2b—|—a)t2
_Z 2a+b (1+122)
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Observe, that

(a—b*@2b+a)ty  (a—b)*2b+a)

2.2 i =
(2:2) 3+ P11 2,)  3(2a 1 D)

£0.

Finally, (2.1) and (2.2), together, imply that I(f,a) = +oo, which con-
tradicts the assumption f € F. Hence

lim f(t)/t = a,

t——+o0

which completes the proof. ]
Theorem 2.10. If f € F,, then lim;_,_ f(t)/t = a.

Proof. Consider f(t) := —f(—t). By Proposition 2.4 we have f € F, and
by Theorem 2.9 we obtain

lim f(t)/t = a.

t——+o0

This is equivalent to

lim f(t)/t=a

t——o00

and completes the proof. O
Remark 2.11. Every function f € F, has the form

(2.3) R3tw— f(t)=at+g(t),

where ¢(t)/t — 0 as [t| — +o0.

3. The harmonic extension H[f]. We introduce a harmonic extension
of f € F from R to C*. By the definition of the class F the following
definition makes sense.

Definition 3.1. For f € F, we define H[f] : Ct — C™" as follows
H[f(2) = az + Plg](2),
where g is related to f by (2.3) and

+o0
(3.1) Plglz) = [ Pl
is the Poisson integral for C* and
1 Im{z}
P.(t) = —
®) 7|z —t]?

is the Poisson kernel for C*.
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Note, that P[g](z) € R for every z € C* and let us denote
U(2) = Re{H[f](2)} = aRe{z} + Plg)(2)
and
V(2) == Im{H[f](2)} = alm{z}.

Throughout this paper U and V will always mean Re{ H[f]} and Im{H[f]},
respectively.
Recall that the biLipschitz condition on f, i.e.

(3.2) 11,0504 ter Lalte — ta] < |f(t2) — f(t1)] < Lafta — ta]
is the necessary condition for H[f] to be quasiconformal (see [2]).

Proposition 3.2. If f € F, satisfies the biLipschitz condition (3.2), then
H{f] is a homeomorphism of CT onto itself.

Proof. Fix y > 0 and let z1 = 1 + iy, 20 = x2 + iy, where z1,22 € R.
Since P,(t) >0, t € R and

+o00
/ P.(t)dt=1, zeCT,

—00

we can write

U(21) — U(22) = ax1 + P[g|(21) — aza — P[g](22)

+o0 1 y
400 1 y
_ / ;m[am +g(t)]dt

+oo
—/_OO 71r82_‘7iy2[a(x1—3)+g(ac1—s)—a(x2—s)—g(acg—s)]ds

+oo 1 y
= /_Oo ;m[f(xl —s)— f(z2 —s)|ds.
Because f increases, then U(z1) > U(z2) for x; > x2. Hence U is univalent
on every horizontal line. Since V' (2) = aIm{z}, H[f] is univalent.

To show that U maps every horizontal line in the upper halfplane onto
R, we fix y > 0 and observe that

Ul + iy) — Uliy) = / Y (f(z—s) - f(~s)ds.

oo w82+ 2

+001

Let x > 0. Since f increases and by applying the biLipschitz condition
(3.2), we have

“+oo

1
Uz +iy) — U(iy) Z/_OO ;ﬁyQLglm\dS:Lgx.
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Let z < 0. Analogically we obtain
. . Ty
Uz +iy) — U(iy) < —/oo ;mLﬂx]ds = Lox.
Since V(z) = alm{z}, H[f](C") =C*. O
The following example shows that not every function f € F has the
extension H|[f] which is quasiconformal.

Example 3.3. Consider the function f : R — R defined as f(¢) = ¢t +
|t|'/2 sgnt. Obviously, f € F| C F since

/-‘roo ‘t‘l/Z
dt < +o00.
oo 1412

On the other hand, we have

uan—fw>:uy—m<1+¢ai¢g),

where t1,t2 > 0. Hence, we see that
Vi>03 1+ = >
L>0 tl,t2>0 \/H—i— \/5

e.g. putting to == t1 /4 := 1/(9L?). This means that f is not biLipschitz and
so it cannot have quasiconformal extension to the upper halfplane.

L,

4. Estimates of partial derivatives of H[f]. Let f € F, and z = z+1iy.
We compute partial derivatives of U and V.

ou 0 Feo 1 2y -1

s () =at 5 (Plale) =a+ [

N (e A O

+o0 s
:a+A L 295 (o +s)—gla—s)ds,

7 (s2 4+ 12)2
oU 0 Too 1 (2 —t)2 — 42
MD%@:%www:[mﬂ&4g£%WMt
‘ +o0 1 52 - y2
-/ Ty o) ol —s)]ds,

ov

%(2) =0,

oV

87y(2) = a.

First, we give the estimates on OU/Jx under assumption, that f € F is
biLipschitz only.
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Theorem 4.1. If f € F, satisfies the biLipschitz condition (3.2), then
(4.2) Ly < gg(z) <L, zeCT.
Proof. Observe, that (3.2) implies
2Ly —a)s < glx+s)—glx—s) <2(L1 —a)s
for every s > 0. Let z = x 4+ iy. Then

ou, . Tl 2ys
R M e GRS G LR

+o00 1 4y82
< —————(L1 —a)ds=1L
oU T 2us
81‘(2’):@—1-/0 ;m[Q(l"FS)—g(.ﬁ—S)]dS
+o00 1 4y82
> —————=(Ly—a)ds = Ls. O
a+/0 7r(SQer2)2( 2—a)ds =Ly
As a corollary from the estimates of OU/0x we obtain the estimates of
the Jacobian Jgs of H[f] defined in (1.1).
Corollary 4.2. If f € F, satisfies the biLipschitz condition (3.2), then
alo < JH[f](Z) <aly, zE€ C™.

Proof. We can rewrite the Jacobian of H[f] in the form
Jyy - VOV
Or dy Oy Ox
Since 0V/0x = 0 and 9V /Jdy = a, by applying the inequalities (4.2) the
proof is completed. O

Now, we give the estimate of OU/Jy under an additional assumption on
f, but first we formulate the following lemma.

Lemma 4.3. If f € F is absolutely continuous function, then
oUu tol s
83/(7:):/0 ;82+y2[f'(:£—|—8)—f’(a:—s)]ds.
Proof. Recall that

oU +o00 1 82 o y2
ay(z):/o ;m[é](iﬁ+5)+g($—s)}d8,
where z = x + iy. Since f is absolutely continuous, f’ exists almost every-
where and for almost all ¢1,t2 € R

fi(t) = f(ta) = g'(t1) — g'(t2).
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Hence, integrating by parts we have

ou 1 s too
@(z) = —;W[Q(UC + ) +g(z - s)] .
Tl s , ,
+ ; ;m[g(ﬂc+s)—g(w—s)]ds.
Since, by Theorem 2.9,
t
lim & =0,
t—+oo
the proof is completed. ]

Recall, that a continuous function ¢ is said to be Dini-continuous with
respect to spherical distance if it satisfies the following condition

(4.3) /ngit)dt:Mg<+oo

for some ¢ € (0, 1], where w : [0, 1] — [0, 1],
w(t) = sup{ds(p(tr), p(t2)) : ds(t1,ta) <t}
is the modulus of continuity of ¢ with respect to spherical distance dj,
|t1 — ta
Obviously, w is non-decreasing function and
(4.4) ds(p(t1), p(t2)) < w(ds(t1,t2))
holds for all t1,ts € R.

ds(tl, tg) =

Remark 4.4. If f satisfies the biLipschitz condition (3.2) and f’ is Dini-
continuous with respect to spherical distance a.e. in R, then f’ exists every-
where in R := RU {oo} and Ly < |f'(t)] < L1, t € R. In particular, there
exists finite value of f’ at the point co. If, additionally, f € F,, then by
Remark 2.11 f is of the form (2.3) and so we have

. / _ . / _
Jim 110 = lim 70 =e.

Theorem 4.5. If f € F satisfies the biLipschitz condition (3.2) and if f’
is Dini-continuous with respect to spherical distance (4.3), then

2 _ 52
oU 21+12) [ M. +1Og<1+\/1 5)]

5 <55

(4.5) = 5

where § == min{s, 1/y/1+ M.} and ¢, M. satisfy (4.3).
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Proof. Since f is biLipschitz, f is absolutely continuous and by Lemma 4.3
we have

ou R A , ,
50 = [ e g9l
+oo |,/ o _
<L [t gml,,

™ Jo S

From the Dini-continuity condition with respect to spherical distance (4.3)
we have that (4.4) holds for f’ and so we obtain

ou ool T+ [f(z+ )] \/1 + [f"(z — 9))?
wol<x

25
<\/1+ (z+5) \/1 (x —s) >]ds.

Again, the biLipschitz condition for f gives

ou (1+13) [t 1 2s .
‘ay( )‘ ™ /0 s <\/1+(x+3)2\/1+(:1:—s)2)d '

Setting

2s
(4.6) \/1—1- x4+ s) \/1 (x —s)
we have
, —2s% +2(1—|—3:) 7t3[—284+2(1+x2)2]
\/1+ (z+s) \/1 (x —s) 453 '
Let

A=t B:=[22(1—-2%) —4], C:=t*1+2z??
A= B? —4AC = 16(1 — t*)(1 + 2°t?).

To apply the substitution (4.6) to the last integral we need to divide it into
two integrals from 0 to v/1 + 22 and from v/1 + 22 to +oco. Then we obtain

ou 41+ L3) s w(t) ,
‘ﬁy( >‘ - /0 (B +20) 13 048
2 1+z2 400
_ 40+ L7) / 120 w(;)t,dH/ 120 w(;)t/d
™ 0 (B+2%) t Vita? (B+55) t

From (4.6) we compute two solutions

s =———— and §f=—-——
2A 2A
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for t € (0,1). Hence, we have

41+ L3 [ 1 41+ L3 [0 -1
ay ™ 0 \/E t s 1 \/E t
2 1 2
_ 8(1+L1) 1 w(t) dt < 2(1 +L1)/ 1 w(t) dqt
™ 0 \/Z t ™ 0 \/1—1':2 t

Since, by definition, w(t) < 1 and w satisfies (4.3),

]2 [ e [

1
S2(1+L2{ t(t Ddt+ [! Amdt, d>q,
m r 52] - olt+f(Sm —dt, d<c¢

< T \/%4_1(% 1+7v61—52>7 5 <.

Simple calculation shows that the above estimate is the best when § =
min{s, 1/4/1 + M.} and the proof is completed. O

In particular, if ¢ is Holder-continuous with respect to spherical distance
ds, i.e.

(4.7) ds(p(t1), p(t2)) < Ads(t1,t2)”

for all ¢1,t2 € R and some constants A > 0 and « € (0, 1], then ¢ is also
Dini-continuous with respect to spherical distance.
We have the following corollary from the proof of Theorem 4.5.

Corollary 4.6. If f € F satisfies the biLipschitz condition (3.2) and f' is
Holder-continuous with respect to spherical distance (4.7), then

oU A1+ L?) B (5,31, A=t
ov AL+ 1L7) a 1.y-1/a
(4.8) ay( )‘ < - B($,3; )

+21og ()\1/“ 4/ Aa _ 1) S A1
where B denotes the incomplete beta function and X\, « satisfy (4.7).

Proof. From the proof of Theorem 4.5 we have
aU( )’ < 2(1+ L?) /1 w(t)
oy ™ 0 tvV1—t2

where w is the modulus of continuity of f’ with respect to spherical distance.
Since f’ satisfies (4.7) and w(t) < 1, we have

w(t) < min{1, \t*}.
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Hence
8U()‘< (1+L2) {fotﬁ A<,
R R IS Vi 1 1
dy ™ 0 A dtt [iove s dt, A> 1

Finally, recall that for @ > 0, b > 0 and ¢ € [0,1] the incomplete beta
function is defined by the formula (see [4])

B(a,b;c) = / 1 —t)tdt.
0
Hence, the proof is completed. ]

5. Quasiconformality of H[f]. Using estimates on partial derivatives of
the extension H[f] we are able to estimate its maximal dilatation Dy,
which is the main tool in studying quasiconformality of H|f].

Theorem 5.1. If f € F, satisfies the biLipschitz condition (3.2) and
|0U/dy| < A for some A > 0, then

Proof. We have

Dpip(2) <2

Combining this with (4.1) we obtain

U ( 9u 2 +a?
Dpip(2) < ma( ) (8ya(6()])(z)
oz

Applying (4.2) and the assumption |0U/dy| < A the theorem follows. [

Theorem 5.2. If f € F, satisfies the biLipschitz condition (3.2) and if f’
is Dini-continuous with respect to spherical distance (4.3), then

& (14 13)° [ + log (=2 5)] +a?
aLg
where ¢ = min{s,1/\/1+ M.} and <, M, satisfy (4.3).

Proof. Theorem 4.5 gives the estimate (4.5) on |0U/dy|. Hence, the theo-
rem follows from Theorem 5.1. ([l

vi1i— 6

L
DH[f](Z)Szl—{_ ) ZG(C+>
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Theorem 5.3. If f € F, satisfies the biLipschitz condition (3.2) and f' is
Hélder-continuous with respect to spherical distance (4.7), then

L1 A2—|—a2
D <=+ c*
() S o #e
where
A1) [BlE 5D, =
T B A+ e (W VR T), A

and B denotes the incomplete beta function and X\, o satisfy (4.7).

Proof. Corollary 4.6 gives the estimate (4.8) on |0U/dy|. Hence, the the-
orem follows from Theorem 5.1. (|
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