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Smith normal form of a matrix
of generalized polynomials
with rational exponents

Abstract. It is proved that generalized polynomials with rational exponents
over a commutative field form an elementary divisor ring; an algorithm for
computing the Smith normal form is derived and implemented.

Introduction. Historically, an important class of optimal control problems
conduced to an interest in generalized polynomials over a commutative field
T ; e.g., geometric programming was evolved and it is keeping its practical
efficacy. It emerges that it is desirable to study generalized polynomial with
rational exponents which can be defined as a map P : Q → T support of
which is a finite set.
Of course, it is necessary to specify properties of generalized polynomials
that are analogous to the properties of classical polynomials and investigate
those that are different. We emphasize that generalized polynomials with
rational exponents over a field do not represent a noetherian ring. In this
paper, we have proved that they form an elementary divisor ring (i.e., each
matrix with generalized polynomials as entries has a Smith normal form);
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thus, we have an important example of an elementary divisor ring, which is
not a principal ideal ring. Further, we have shown an interesting subclass of
elementary divisor rings, so-called EDE-rings, which have an independent
theoretical importance.
As a method, we use our original approach, which we have called the
transfer of a ring. By this method, we realize an algorithm for computing
the Smith normal form of a matrix over generalized polynomials with ra-
tional exponents over some field (real, prime finite). We have implemented
this algorithm in the computer algebra system Mathematica; examples are
enclosed.

1. Starting points. In this paper, we use the terminology from the mono-
graph of W. C. Brown, [1]. A ring R will be always commutative and con-
taining an identity 1R 6= 0R, Z(R) denotes the set of all zero divisors of R
(including 0R) and U(R) denotes the set of all units of R, which is a group
with respect to the ring multiplication. Further, Mm×n(R) denotes the set
of allm×n matrices with entries in R. By an elementary transvection Vij(r)
(of order m), 1 ≤ i 6= j ≤ m, r ∈ R, we mean a matrix [aνµ] fromMm×m(R)
with

aνµ =


1R for ν = µ

r for ν = i, µ = j

0R otherwise

and by an elementary dilation Si(r) (of order m), 1 ≤ i ≤ m, r ∈ U(R), we
mean a matrix [aνµ] from Mm×m(R) with

aνµ =


1R for ν = µ 6= i

r for ν = µ = i

0R otherwise.

Finite products of elementary transvections and elementary dilations (of or-
der m) are called (m-th order) elementary matrices. Evidently, elementary
matrices (elementary transvections, elementary dilations) are invertible and
their inversions are elementary matrices (elementary transvections, elemen-
tary dilations, respectively).

Remark 1. Elementary permutations Pij are also sometimes considered
together with transvections and dilations; however, they represent nothing
new, because they can be defined (for i 6= j) as

Pij = Vji(1R)Sj(−1R)Vij(1R)Vji(−1R)

and their inversions are again elementary permutations.

All invertible matrices of order n with entries in R form a group with
respect to the multiplication; this is the well-known general linear group
GLn(R). Of course, all elementary matrices of order n with entries in R
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form its subgroup; it is denoted by GEn(R). It is clear that GL1(R) =
GE1(R) (= U(R)) for every R. If for any n ∈ N and a ring R, the equality
GLn(R) = GEn(R) is satisfied, we say R is a GEn-ring. If a ring R is GEn-
ring for all n ∈ N, then R is called the GE-ring or the generalized euclidean
ring. Fields, euclidean rings and semilocal rings are known examples of
generalized euclidean rings. On the other hand, they are known rings, for
which GE2(R) is a proper subgroup of GL2(R). The example of such a ring
is the ring Z

[
1+
√
−19

2

]
of algebraic integers of Q

[√
−19

]
. The example of

a second order non-elementary invertible matrix with entries in Z
[

1+
√
−19

2

]
is [

3− 1+
√
−19

2 2 + 1+
√
−19

2

−3− 21+
√
−19

2 5− 21+
√
−19

2

]
.

Another example of a ring, for which GE2(R) is a proper subgroup of
GL2(R) is e.g., the ring T [x, y] of polynomials in two indeterminates over a
field T . The second order non-elementary invertible matrix with entries in
this ring is [

1 + xy x2

−y2 1− xy

]
.

(Nevertheless, it is known, that GEn(R) = GLn(R) is satisfied for all natural
n in the ring T [x1, . . . , xm] of polynomials in m ≥ 3 indeterminates.) For
more detail see e.g., papers of P. M. Cohn [3] and A. A. Suslin [13].
Let A ∈ Mm×n(R). A diagonal matrix S = Diag(s1, . . . , sr) ∈ Mm×n(R)
is called the Smith normal form of A if A ≈ S (i.e., there exist invertible
matrices U ∈ Mm×m(R), V ∈ Mn×n(R) with UAV = S) and s1|s2| . . . |sr in
R (i.e., the element si divides the element si+1 in R for each 1 ≤ i ≤ r− 1).
If each matrix with entries in R has a Smith normal form, then R is called
an elementary divisor ring. We say about the mentioned matrix S that it
is in the Smith normal form. In an elementary divisor ring, every finitely
generated ideal is principal. Nevertheless, the opposite implication is not
true in general. For an explanation, we can define the adequate ring as a
ring R in which every finitely generated ideal is principal and for which the
following condition is satisfied: for every a, b ∈ R, a 6= 0R, the element a
may be written as a = rs with (r, b) = (1R) and (t, b) 6= (1R) for every
nonunit divisor t of s. (As usual, (a1, . . . , ak) denotes the ideal generated
by a1, . . . , ak.) Now, we can recall Helmer’s theorem (see [7], [6]): if a ring
R is adequate and Z(R) = {0R} (i.e., R is an integral domain), then R is
an elementary divisor ring.

2. EDE-rings. We introduce additional concepts and formulate a little bit
familiar assertions. If F is an automorphism of R (we shall write F ∈ AutR)



84 M. Kureš and L. Skula

and A = [aµν ] ∈ Mm×n(R), then we put

F̃ (A) = [F (aµν)] ∈ Mm×n(R).

Certainly, F̃ is a bijection of Mm×n(R) onto itself. We have (for suitable
types of matrices and r ∈ R) the following identities:

F̃ (A + B) = F̃ (A) + F̃ (B),

F̃ (AB) = F̃ (A)F̃ (B),

F̃ (rA) = F (r)F̃ (A).

Thus, we have easily two useful assertions.

Lemma 1. The matrix U ∈ Mm×m(R) is invertible (elementary) if and
only if F̃ (U) is invertible (elementary, respectively).

Lemma 2. The matrix S ∈ Mm×m(R) is in a Smith normal form if and
only if F̃ (S) is in a Smith normal form.

Now, we define special elementary divisor rings. Let for each matrix
A ∈ Mm×n(R) with entries in R there exist elementary matrices U ∈
Mm×m(R), V ∈ Mn×n(R) with UAV = S, where S ∈ Mm×n(R) is in
the Smith normal form. Then we call R an EDEm,n-ring. If a ring R
is EDEm,n-ring for all m,n ∈ N, then R is called the EDE-ring.

Proposition 1. Let R be an elementary divisor ring R. Then R is an
EDE-ring if and only if R is a GE-ring.

Proof. Let us suppose R is an EDE-ring. We present that every invertible
square matrix over R is elementary: let n ∈ N and let A ∈ Mn×n(R) be
invertible. Then, there exist U ∈ Mn×n(R), V ∈ Mn×n(R) with UAV = S,
where S = Diag(s1, . . . , sn) ∈ Mn×n(R) is in a Smith normal form. The
matrix S is invertible, and thus si ∈ U(R) for 1 ≤ i ≤ m. It follows S is
elementary. As U−1, V −1 are also elementary, the matrix A = U−1SV −1 is
elementary. The proof in an opposite direction is trivial. �

Lemma 3. Let R be an EDEm,n-ring. Then R is also an EDEn,m-ring.

Proof. Let A ∈ Mm×n(R), U ∈ GEm(R), V ∈ GEn(R), UAV = S in the
Smith normal form. Then

ST = (UAV )T = V TATUT

and ST is in the Smith normal form. Evidently, V T and UT are elementary
matrices as the mere change of row and column operations. �

Remark 2. It follows from the proof of Proposition 1 that an elementary
divisor ring is an EDEn,n-ring if and only it is GEn-ring. It is also clear, that
if an elementary divisor ring R is simultaneously GEm-ring and GEn-ring,
then R is EDEm,n-ring, EDEn,m-ring, EDEm,m-ring, and EDEn,n-ring.
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3. Transfer of a ring. Let R be a subring of a ring P . We say that P
transfers to R, if for every N ∈ N and every σ1, . . . , σN ∈ P there exists a
unit ε ∈ U(P ) and an automorphism F ∈ AutP of the ring P such that

F (εσi) ∈ R for every 1 ≤ i ≤ N .

Proposition 2. Let a ring P transfers to its subring R. If R is an elemen-
tary divisor ring (an EDE-ring), then P is an elementary divisor ring (an
EDE-ring), too.

Proof. Let A = [aij ] ∈ Mm×n(S). As P transfers to its subring R, then
there is ε ∈ U(P ) and an automorphism F ∈ AutP such that F (εaij) ∈ R
for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. There exist invertible (elementary) matrices
Ũ ∈ Mm×m(R), Ṽ ∈ Mn×n(R) such that

Ũ F̃ (εA)Ṽ = S̃,

where S̃ ∈ Mm×n(R) is in the Smith normal form. Let

U = F̃−1(Ũ), V = F̃−1(Ṽ ), S = F̃−1(S̃).

Then U ∈ Mm×m(P ) and V ∈ Mn×n(P ) are invertible (elementary) ma-
trices and S ∈ Mm×n(P ) is in the Smith normal form (in P ). Further,
UεAV = S, thus UAV = ε−1S. However, ε−1D ∈ Mm×n(P ) is in the Smith
normal form (in P ), and the proposition is proved. �

Let T be a field. A generalized polynomial with rational exponents can be
defined as a map

P : Q → T

support of which is a finite set. Formally, such polynomials can be written
in the form

P(q1)Zq1 + · · ·+ P(qk)Zqk ,

where Z is an indeterminate; q1, . . . , qk ∈ Q are called exponents and
P(q1), . . . ,P(qk) ∈ T are called coefficients. Such generalized polynomials
were studied by numerous authors and sometimes named signomials (with
rational exponents), see e.g., [4]. We define operations + and · by usual
way (as on the ring T [Z] of polynomials over T ). Then, evidently, the set of
all generalized polynomials with rational exponents is a commutative ring
with unit: this ring will be denoted by T Q[Z]. Moreover, T Q[Z] is an inte-
gral domain containing T [Z] as its own subdomain. An element of T Q[Z]
(denoting by E) belongs to U(T Q[Z]) if and only if its support is singleton.
Let n ∈ N and P ∈ T Q[Z]. We define the map

Rn : T Q[Z] → T Q[Z], Rn : P 7→ Q,

where Q ∈ T Q[Z] is defined by

Q(α) = P
(α

n

)
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(for all α ∈ Q). The map Rn is an automorphism of T Q[Z]; i.e., Rn ∈
AutT Q[Z], for more details see the monographical work of J. Karásek and
J. Šlapal, [10].

Proposition 3. The ring T Q[Z] transfers to its subring T [Z] of polynomials
in one indeterminate over T .

Proof. Let N ∈ N and S1, . . . ,SN ∈ T Q[Z] be maps with non-empty sup-
port. Let suppSi = {ui0 > ui1 > · · · > uini} for 1 ≤ i ≤ N , where
ni ∈ N ∪ {0} and uij ∈ Q. Then, there exists u ∈ Q such that uij + u ≥ 0
for all 1 ≤ i ≤ N , 0 ≤ j ≤ ni. Let E ∈ T Q[Z], where E(u) = 1T

and E(q) = 0T for all q ∈ Q − {u}. Then E = Zu ∈ U(T Q[Z]) and
suppSi = {vi0 > vi1 > · · · > vini} 1 ≤ i ≤ N , where vij = uij + u ≥ 0
for 1 ≤ i ≤ N , 0 ≤ j ≤ ni.
Now, there also exists n ∈ N for which nvij = cij ∈ N ∪ {0} for all

1 ≤ i ≤ N , 0 ≤ j ≤ ni. We put F = Rn. Let 1 ≤ i ≤ N be fixed; P = ESi

and Q = F (P) = F (ESi) = Rn(P). Then

Q(cij) = P
(cij

n

)
= P(vij) 6= 0 for 0 ≤ j ≤ ni

Q(q) = 0 for q ∈ Q− {cij ; 0 ≤ j ≤ ni}.

Hence Q = F (ESi) ∈ T [Z]. �

Propositions 2 and 3 give the following results immediately:

Proposition 4. The ring T Q[Z] is an EDE-ring.

Proof. Of course, T [Z] is an EDE-ring and the assertion is an application
of the mentioned Propositions. �

Remark 3. The ring T Q[Z] is not noetherian, see e.g., [10], thus we have
an example of an elementary divisor ring (even EDE-ring!), which is not a
principal ideal ring.

4. Algorithm for computing the Smith normal form of a matrix
over T Q[Z]. There are many algorithms for computing the Smith normal
form over integer and polynomial matrices, see e.g., [2], [8], [14]. It is
known that they can be realized in polynomial time. So, the task is the
implementation of the transfer of the ring T Q[Z] described above and using
of an algorithm over polynomial matrices. We have announced our approach
in [11]; it can be presented by the following way.

Input: Generalized polynomials are entered as a list of ordered couples
with the exponent as the first term and the coefficient as the second. The
matrix of generalized polynomials is entered as a list of m ordered n-tuples.
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Thus, the input has a form

A = [ [((q11,1,P11(q11,1)), . . . , (q11,k11 ,P11(q11,k11))),
. . . ,

((q1n,1,P1n(q1n,1)), . . . , (q1n,k1n ,P1n(q1n,k1n)))],
. . . ,

[((qm1,1,P11(qm1,1)), . . . , (qm1,km1 ,Pm1(qm1,km1))),
. . . ,

((qmn,1,Pmn(qmn,1)), . . . , (qmn,kmn ,Pmn(qmn,kmn)))] ].

Step 1. The arrangement of input. In general, a certain exponent
can occur in the input of a polynomial several times (possibly in different
forms) and coefficients can vanish. Thus, entered couples are ordered and
unnecessary couples are removed. From now, we assume

qij,1 < · · · < qij,kij

and
Pij(qij,1) 6= 0, . . . ,Pij(qij,kij

) 6= 0
for every non-zero generalized polynomial (i = 1, . . . ,m, j = 1, . . . , n).
Step 2. Exponents are transformed to non-negative. We take

γ = −min{qij,kij
; i = 1, . . . ,m, j = 1, . . . , n}

and set
rij,κij = γ + qij,κij

for all i = 1, . . . ,m, j = 1, . . . , n and all κij = 1, . . . , kij . The exponents
qij,κij are replaced with rij,κij .
Step 3. Exponents are transformed to non-negative integers.
We find the least common denominator of all rij,κij (i = 1, . . . ,m, j =
1, . . . , n, κij = 1, . . . , kij) and denote it by ρ. Then we realize the following
transformation:

q̃ij,κij = ρrij,κij

for all i = 1, . . . ,m, j = 1, . . . , n and all κij = 1, . . . , kij . The exponents
rij,κij are replaced with q̃ij,κij .
Step 4. Smith normal form is computed. Now, our input has a form

Ã = [ [((q̃11,1,P11(q11,1)), . . . , (q̃11,k11 ,P11(q11,k11))),
. . . ,

((q̃1n,1,P1n(q1n,1)), . . . , (q̃1n,k1n ,P1n(q1n,k1n)))],
. . . ,

[((q̃m1,1,P11(qm1,1)), . . . , (q̃m1,km1 ,Pm1(qm1,km1))),
. . . ,

((q̃mn,1,Pmn(qmn,1)), . . . , (q̃mn,kmn ,Pmn(qmn,kmn)))] ]
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and represents a matrix with entries in (standard) polynomial ring R[Z].
Thus, usual Smith normal form S̃ and factors Ũ , Ṽ are computed (for Ã).

Step 5. The reverse of Step 3. We denote by s̃ij,κij , ũij,κij and ṽij,κij

the exponents in matrices S̃, Ũ and Ṽ , respectively. Then we realize the
following transformation:

sij,κij =
1
ρ
s̃ij,κij

wij,κij =
1
ρ
ũij,κij

vij,κij =
1
ρ
ṽij,κij

(i = 1, . . . ,m, j = 1, . . . , n, κij = 1, . . . , kij).

Step 6. The reverse of Step 2. We finish:

uij,κij = −γ + wij,κij

(i = 1, . . . ,m, j = 1, . . . , n, κij = 1, . . . , kij). (Likewise, the second factor V
can be modified by this way.)

Output: The required matrices S, U and V are matrices with exponents
sij,κij , uij,κij and vij,κij respectively.

5. Examples for T = R and for T = Fp. Packages of Mathematica
commands for finding the Smith normal form of a matrix with entries in
polynomials are universally available. Usually, they provide commands for
transforming matrices as well.
The new package SmithFormGP.m extends power of the package
SmithForm.m. The package SmithForm.m is actively used; we employ the
package [12] programmed by A. Pascoletti. In particular, the command

{S,{U,V}}=SFGP[A,Z]

yields the Smith normal form S of the matrix A with entries in RQ[Z] (or
QQ[Z]) together with the factors U, V , S = UAV ; Z is an indeterminate.
Further, the command

{S,{U,V}}=SFGPN[A,Z,p]

yields the Smith normal form S of the matrix A with entries in F Q
p [Z]

together with the factors U, V , where p is a prime and Fp is the prime finite
field. For the matrix

A =

Z 0 2Z3

2
Z 0 3Z

0 Z4 + 5
√

Z 0

 ,
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we have obtained the following Smith normal forms as outputs of our com-
mands SFGP[A,Z], SFGPN[A,Z,2], SFGPN[A,Z,3], SFGPN[A,Z,5],
SFGPN[A,Z,7]:1 0 0

0 Z
3
2 0

0 0 Z
15
2 + 5Z4

 ,

Z
3
2 0 0

0 Z2 0
0 0 Z

11
2 + Z2

 ,

1 0 0
0 Z

3
2 0

0 0 Z
15
2 + 2Z4

 ,

1 0 0
0 Z4 0
0 0 Z5

 ,

1 0 0
0 Z

3
2 0

0 0 Z
15
2 + 5Z4

 ,

respectively. A number of examples of a use of the command SFGP[A,Z]
including also non-square matrices, irrational coefficients of polynomials,
etc., is in [11].
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