DOI: 10.2478/v10062-008-0009-z

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXII, 2008	SECTIO A	75 - 80

JAN KUREK and WŁODZIMIERZ M. MIKULSKI

The natural operators lifting vector fields to the bundle of affinors

ABSTRACT. All natural operators $T \rightsquigarrow T(T \otimes T^*)$ lifting vector fields X from *n*-dimensional manifolds M to vector fields B(X) on the bundle of affinors $TM \otimes T^*M$ are described.

1. Introduction. In [3], the second author studied the problem how a 1form ω on an *n*-manifold M induces a 1-form $B(\omega)$ on $TM \otimes T^*M$. This problem was reflected in natural operators $B: T^* \rightsquigarrow T^*(T \otimes T^*)$ over *n*manifolds. It is proved that the set of natural operators $T^* \rightsquigarrow T^*(T \otimes T^*)$ over *n*-manifolds is a free $C^{\infty}(\mathbf{R}^n)$ -module of dimension 2n, and there is presented a basis of this module.

In this note we study a similar problem how a vector field X on an *n*manifold M induces a vector field B(X) on $TM \otimes T^*M$. This problem is reflected in natural operators $T \rightsquigarrow T(T \otimes T^*)$ over *n*-manifolds. We prove that the set of natural operators $T \rightsquigarrow T(T \otimes T^*)$ over *n*-manifolds is a free $C^{\infty}(\mathbf{R}^n)$ -module of dimension n + 1. We construct a basis of this module.

We recall that a natural operator $B: T \rightsquigarrow T(T \otimes T^*)$ over *n*-manifolds is an $\mathcal{M}f_n$ -invariant family of regular operators

$$B: \mathcal{X}(M) \to \mathcal{X}(TM \otimes T^*M)$$

²⁰⁰⁰ Mathematics Subject Classification. 58A20, 53A55.

Key words and phrases. Natural bundles, natural operators.

for all *n*-manifolds M. The invariance means that if vector fields X_1 on M and X_2 on N are φ -related for some local diffeomorphism $\varphi : M \to N$ between *n*-manifolds then the vector fields $B(X_1)$ and $B(X_2)$ are $T\varphi \otimes T^*\varphi$ -related. The regularity means that B transforms smoothly parametrized families of vector fields into smoothly parametrized families of vector fields.

From now on x^1, \ldots, x^n are the usual coordinates on \mathbf{R}^n and $\partial_i = \frac{\partial}{\partial x^i}$ for $i = 1, \ldots, n$ are the canonical vector fields on \mathbf{R}^n .

All manifolds and maps are assumed to be of class C^{∞} .

2. Examples of natural operators $T \rightsquigarrow T(T \otimes T^*)$.

Example 2.1. Let X be a vector field on an *n*-manifold M. Let $\mathcal{T} \otimes \mathcal{T}^*X$ be the flow lifting of X to $TM \otimes T^*M$. More precisely, if φ_t is the flow of X, then $T\varphi_t \otimes T^*\varphi_t$ is the flow of $\mathcal{T} \otimes \mathcal{T}^*X$. The correspondence $\mathcal{T} \otimes \mathcal{T}^*$: $T \rightsquigarrow T(T \otimes T^*)$ given by $X \to \mathcal{T} \otimes \mathcal{T}^*X$ is a natural operator (called the flow operator) in question.

Example 2.2. For k = 0, ..., n - 1 we have the canonical vector field L^k on $TM \otimes T^*M$ such that

$$L^{k}(A) = \frac{d}{dt} \Big|_{0} (A + tA^{k}), \qquad A \in End(T_{x}M) = T_{x}M \otimes T_{x}^{*}M, \qquad x \in M,$$

where A^k is the k-th power of A ($A^0 = id$). The vector field L^k will be called the k-th Liouville vector field on $TM \otimes T^*M$ (L^1 is the classical Liouville vector field on $TM \otimes T^*M$). The correspondence $L^k : T \rightsquigarrow T(T \otimes T^*)$ is a natural operator in question.

3. The $C^{\infty}(\mathbb{R}^n)$ -module of natural operators $T \rightsquigarrow T(T \otimes T^*)$ over *n*-manifolds. If $L: V \to V$ is an endomorphism of an *n*-dimensional vector space V then $a_1(L), \ldots, a_n(L)$ denote the coefficient of the characteristic polynomial

$$W_L(\lambda) = \det(\lambda i d_V - L) = \lambda^n + a_1(L)\lambda^{n-1} + \dots + a_{n-1}(L)\lambda + a_n(L).$$

Thus for every *n*-manifold M we have maps $a_1, \ldots, a_n : TM \otimes T^*M \to \mathbf{R}$ (as $T_x M \otimes T_x^* M = End(T_x M)$).

The vector space of all natural operators $B : T \rightsquigarrow T(T \otimes T^*)$ over *n*manifolds is additionally a module over the algebra $C^{\infty}(\mathbf{R}^n)$ of smooth maps $\mathbf{R}^n \to \mathbf{R}$. Actually given a smooth map $f : \mathbf{R}^n \to \mathbf{R}$ and a natural operator $B : T \rightsquigarrow T(T \otimes T^*)$ we have natural operator $fB : T \rightsquigarrow T(T \otimes T^*)$ given by

$$(fB)(X) = f(a_1, \dots, a_n)B(X)$$

for any vector field X on an n-manifold M.

4. The main result. The main result of this short note is the following classification theorem.

Theorem 1. The flow operator $\mathcal{T} \otimes \mathcal{T}^*$ together with the k-th Liouville operators L^k for k = 0, ..., n - 1 form a basis of the $C^{\infty}(\mathbb{R}^n)$ -module of natural operators $T \rightsquigarrow T(T \otimes T^*)$ over n-manifolds.

The proof of Theorem 1 will occupy the rest of this note.

5. The result of J. Dębecki. The vector space $End(\mathbf{R}^n)$ of all endomorphisms of \mathbf{R}^n is a GL(n)-space because of the usual (adjoint) action of GL(n) on $End(\mathbf{R}^n)$.

We have the following result of J. Dębecki.

Proposition 1 ([1]). Any GL(n)-equivariant map

$$C: End(\mathbf{R}^n) \to End(\mathbf{R}^n)$$

is of the form

$$C(A) = \sum_{k=0}^{n-1} f_k(a_1(A), \dots, a_n(A)) A^k$$

for some uniquely determined maps $f_k : \mathbf{R}^n \to \mathbf{R}$.

6. The vertical type natural operators $B : T \rightsquigarrow T(T \otimes T^*)$ over *n*-manifolds. A natural operator $B : T \rightsquigarrow T(T \otimes T^*)$ is of vertical type if B(X) is a vertical vector field for any vector field X on a *n*-manifold.

Using Proposition 1 we prove the following fact.

Proposition 2. The $C^{\infty}(\mathbf{R}^n)$ -submodule of vertical type natural operators $B: T \rightsquigarrow T(T \otimes T^*)$ over n-manifolds is free and n-dimensional. The k-th Liouville operators L^k for k = 0, ..., n-1 form a basis of this module.

Proof. Let $B: T \rightsquigarrow T(T \otimes T^*)$ be a vertical type natural operator over *n*-manifolds. Because of the naturality and the Frobenius theorem this operator is uniquely determined by the restriction of vertical vector field $B(\partial_1)$ to the fiber $End(T_0\mathbf{R}^n) = T_0\mathbf{R}^n \times T_0^*\mathbf{R}^n$.

Using the naturality of B with respect to the homotheties $tid_{\mathbf{R}^n}$ for $t \neq 0$ we see that

 $B(\partial_1)_{|End(T_0\mathbf{R}^n)} = B(t\partial_1)_{|End(T_0\mathbf{R}^n)}$

for $t \neq 0$. Putting $t \to 0$ we see that

$$B(\partial_1)_{|End(T_0\mathbf{R}^n)} = B(0)_{|End(T_0\mathbf{R}^n)}.$$

Because of the naturality of B(0) with respect to linear automorphisms of \mathbf{R}^n we have a GL(n)-equivariant map

$$C: End(T_0\mathbf{R}^n) \to End(T_0\mathbf{R}^n)$$

given by

$$B(0)(A) = \frac{d}{dt} \Big|_0 (A + tC(A))$$

for $A \in End(T_0\mathbf{R}^n)$.

By Proposition 1 we have that

$$C(A) = \sum_{k=0}^{n-1} f_k(a_1(A), \dots, a_n(A)) A^k$$

for some uniquely determined maps $f_k : \mathbf{R}^n \to \mathbf{R}$. Then

$$B(\partial_1)(A) = \sum_{k=0}^{n-1} f_k(a_1(A), \dots, a_n(A)) L^k(A)$$

for all $A \in End(T_0\mathbf{R}^n)$. That is why $B = \sum_{k=0}^{n-1} f_k L^k$, as well.

7. Proof of Theorem 1. It is clear that Theorem 1 will be proved after proving the following fact.

Proposition 3. Let $B : T \rightsquigarrow T(T \otimes T^*)$ be a natural operator over *n*-manifolds. Then there exists a unique map $f : \mathbf{R}^n \to \mathbf{R}$ such that $B - f\mathcal{T} \otimes \mathcal{T}^*$ is a vertical type operator.

Let $\pi: T\mathbf{R}^n \otimes T^*\mathbf{R}^n \to \mathbf{R}^n$ be the bundle projection.

Lemma 1. There exist unique maps $f_k \in C^{\infty}(\mathbf{R}^n)$ such that

$$T\pi(B(w^{o})(A)) = \sum_{k=0}^{n-1} f_{k}(a_{1}(A), \dots, a_{n}(A))A^{k}(w)$$

for $A \in End(T_0\mathbf{R}^n) = T_0\mathbf{R}^n \otimes T_0^*\mathbf{R}^n$ and $w \in T_0\mathbf{R}^n$, where w^o is the "constant" vector field on \mathbf{R}^n with $w_0^o = w$.

Proof. By the invariance of B with respect to the homotheties $tid_{\mathbf{R}^n}$ for $t \neq 0$ we have the homogeneity condition

$$T\pi(B((tw)^o)(A) = tT\pi(B(w^o))(A).$$

Then by the homogeneous function theorem, [2], $T\pi(B(w^o)(A)$ depends linearly on w.

So, we can define a map $C : End(T_0\mathbf{R}^n) \to End(T_0\mathbf{R}^n)$ by

$$C(A)(w) = T\pi(B(w^o)(A))$$

for all $A \in End(T_0\mathbf{R}^n)$ and $w \in T_0\mathbf{R}^n$.

Because of the naturality of B with respect to linear automorphisms of \mathbf{R}^n , C is GL(n)-equivariant. Then applying Proposition 1 we end the proof.

Lemma 2. Let $B: T \rightsquigarrow T(T \otimes T^*)$ be as in Lemma 1. Let f_0, \ldots, f_{n-1} be the maps from Lemma 1. Then $f_j = 0$ for $j = 1, \ldots, n-1$.

Proof. Consider $j = 1, \ldots, n-1$. Let $b = (b_1, \ldots, b_n) \in \mathbf{R}^n$. Let $A \in End(T_0\mathbf{R}^n)$ be such that $A(\partial_i(0)) = \partial_{i+1}(0)$ for $i = 1, \ldots, n-1$ and $A(\partial_n(0)) = -b_n\partial_1(0) - \ldots - b_1\partial_n(0)$. Then $a_i(A) = b_i$ for $i = 1, \ldots, n$. Let $\varphi_t = (x^1, \ldots, x^{j+1} + tx^{j+1} + \ldots, x^n)$ be the flow of $\partial_{j+1} + x^{j+1}\partial_{j+1}$

near $0 \in \mathbf{R}^n$.

Since $T_0\varphi_1 \circ A \circ T_0\varphi_1^{-1} \neq A$ (as the left hand side evaluated at $\partial_j(0)$ is equal to $2\partial_{j+1}(0)$ and the right hand side evaluated in the same vector $\partial_j(0)$ is equal to $\partial_{j+1}(0)$), we have

(1)
$$\mathcal{T} \otimes \mathcal{T}^*(x^{j+1}\partial_{j+1})(A) \neq 0.$$

Using the Zajtz theorem [4], since $(\partial_{j+1} + x^{j+1}\partial_{j+1})(0) = \partial_{j+1}(0) \neq 0$, we find a diffeomorphism $\eta : \mathbf{R} \to \mathbf{R}$ such that

(2)
$$j_0^1 \psi = id$$

and

(3)
$$\psi_*\partial_{j+1} = \partial_{j+1} + x^{j+1}\partial_{j+1}$$

near $0 \in \mathbf{R}^n$, where $\psi(x^1, ..., x^n) = (x^1, ..., x^j, \eta(x^{j+1}), ..., x^n)$.

Clearly ψ preserves ∂_1 . Because of (2), ψ preserves A. Then ψ preserves $B(\partial_1)(A)$.

Because of (2), ψ preserves any vertical vector tangent to $T\mathbf{R}^n \otimes T^*\mathbf{R}^n$ at A. Moreover, ψ preserves all ∂_l for l = 1, ..., n with $l \neq j + 1$. By (3), ψ sends $\mathcal{T} \otimes \mathcal{T}^*(\partial_{j+1})(A)$ into $\mathcal{T} \otimes \mathcal{T}^*(\partial_{j+1} + x^{j+1}\partial_{j+1})(A)$. Then ψ sends

$$B(\partial_1)(A) = \sum_{k=0}^{n-1} f_k(a_1(A), \dots, a_n(A)) \mathcal{T} \otimes \mathcal{T}^*(\partial_{k+1})(A) + \text{some vertical vector}$$

into $B(\partial_1)(A) + f_j(b)\mathcal{T} \otimes \mathcal{T}^*(x^{j+1}\partial_{j+1})(A)$. Then because of (1), we have $f_j(b) = 0$, as well.

Proof of Proposition 3. Because of Lemmas 1 and 2 we have

 $B(\partial_1)(A) = f_0(a_1(A), \dots, a_n(A))\mathcal{T} \otimes \mathcal{T}^*(\partial_1)(A) + \text{some vertical vector}$

for any $A \in End(T_0 \mathbb{R}^n)$. Since B is determined by $B(\partial_1)$ over 0, the proof of Proposition 3 is complete.

References

- Dębecki, J., Natural transformations of affinors into functions and affinors, Suppl. Rend. Circolo Mat. Palermo **30(II)** (1993), 101–112.
- [2] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [3] Mikulski, W. M., Liftings of 1-forms to the bundle of affinors, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2001), 109–113.
- [4] Zajtz, A., On the order of natural differential operators and liftings, Ann. Polon. Math. 49 (1988), 169–175.

J. Kurek and W. M. Mikulski

Jan Kurek Institute of Mathematics Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland e-mail: kurek@hektor.umcs.lublin.pl

Received January 4, 2008

Włodzimierz M. Mikulski Institute of Mathematics Jagiellonian University ul. Łojasiewicza 6 30-348 Kraków, Poland e-mail: mikulski@im.uj.edu.pl

80