ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
 LUBLIN - POLONIA

K. K. DEWAN and SUNIL HANS

Growth of polynomials whose zeros are outside a circle

Abstract

If $p(z)$ be a polynomial of degree n, which does not vanish in $|z|<k, k<1$, then it was conjectured by Aziz [Bull. Austral. Math. Soc. 35 (1987), 245-256] that $$
\max _{|z|=r}|p(z)| \geq \frac{r^{n}+k^{n}}{1+k^{n}} \max _{|z|=1}|p(z)| \text { for } k^{2}<r<1
$$

In this paper, we consider the case $k<r<1$ and present a generalization as well as improvement of the above inequality.

1. Introduction and statement of results. Let $p(z)$ be a polynomial of degree n and let $M(p, R)=\max _{|z|=R}|p(z)|$. Then it is a simple consequence of maximum modulus principle (for reference see [4, vol. I, p. 137, prob. III, 269] that

$$
\begin{equation*}
M(p, R) \leq R^{n} M(p, 1) \text { for } R \geq 1 \tag{1.1}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\alpha z^{n}$, where $|\alpha|=1$.

[^0]It was shown by Ankeny and Rivlin [1] that if $p(z) \neq 0$ in $|z|<1$, then inequality (1.1) can be replaced by

$$
\begin{equation*}
M(p, R) \leq \frac{R^{n}+1}{2} M(p, 1) \text { for } R \geq 1 . \tag{1.2}
\end{equation*}
$$

The above inequality is best possible and equality holds for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$.

As a generalization of inequality (1.2), Aziz [2] conjectured the following results.

Conjectured results. If $p(z)$ is a polynomial of degree n, which does not vanish in $|z|<k$, then

$$
\begin{equation*}
M(p, r) \geq \frac{r^{n}+k^{n}}{1+k^{n}} M(p, 1) \text { for } k^{2}<r<1, k<1 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
M(p, R) \leq \frac{R^{n}+k^{n}}{1+k^{n}} M(p, 1) \text { for } R>k^{2}, k>1 \tag{1.4}
\end{equation*}
$$

In the same paper, Aziz [2] was able to prove inequality (1.4).
In an attempt to answer the inequality (1.3) conjectured by Aziz, we have been able to prove the following result.

Theorem 1. If $p(z)$ is a polynomial of degree n, which does not vanish in $|z|<k, k<1$, then for $0<k<r<\lambda \leq 1$

$$
\begin{equation*}
M(p, r) \geq \frac{r^{n}+k^{n}}{\lambda^{n}+k^{n}} M(p, \lambda), \tag{1.5}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain the maximum at the same point on $|z|=1$, where $q(z)=z^{n} \overline{p(1 / \bar{z})}$. The result is best possible and equality holds for $p(z)=z^{n}+k^{n}$.

If we take $\lambda=1$ in Theorem 1 , then inequality (1.5) reduces to the following result, which is similar to inequality (1.3).

Corollary 1. If $p(z)$ is a polynomial of degree n, which does not vanish in $|z|<k, k<1$, then for $0<k<r<1$

$$
\begin{equation*}
M(p, r) \geq \frac{r^{n}+k^{n}}{1+k^{n}} M(p, 1) \tag{1.6}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain the maximum at the same point on $|z|=1$, where $q(z)=z^{n} \overline{p(1 / \bar{z})}$. The result is best possible and equality holds for $p(z)=z^{n}+k^{n}$.

Our next result further improves upon inequality (1.6).

Theorem 2. If $p(z)$ is a polynomial of degree n, which does not vanish in $|z|<k, k<1$, then for $0<k<r<1$

$$
\begin{equation*}
M(p, r) \geq\left(\frac{r^{n}+k^{n}}{1+k^{n}}\right) M(p, 1)+\left(\frac{1-r^{n}}{1+k^{n}}\right) m(p, k) \tag{1.7}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain the maximum at the same point on $|z|=1$, where $q(z)=z^{n} \overline{p(1 / \bar{z})}$ and $m(p, k)=\min _{|z|=k}|p(z)|$. The result is best possible and equality holds for $p(z)=z^{n}+k^{n}$.
2. Lemma. For the proofs of the theorems we need the following lemma due to Govil [3].

Lemma. If $p(z)$ is a polynomial of degree n, which does not vanish in $|z|<k, k \leq 1$, then

$$
\begin{equation*}
M\left(p^{\prime}, 1\right) \leq \frac{n}{1+k^{n}} M(p, 1) \tag{2.1}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain the maximum at the same point on $|z|=1$, where $q(z)=z^{n} \overline{p(1 / \bar{z})}$.

3. Proofs of the theorems.

Proof of Theorem 1. If $p(z) \neq 0$ in $|z|<k, k<1$ and $0<t<1, k<t$, then $P(z)=p(t z)$ has no zero in $|z|<k / t, k / t<1$. Hence applying above Lemma to the polynomial $P(z)$, we get

$$
M\left(P^{\prime}, 1\right) \leq \frac{n}{1+k^{n} / t^{n}} M(P, 1)
$$

which is equivalent to

$$
\begin{equation*}
M\left(p^{\prime}, t\right) \leq \frac{n t^{n-1}}{t^{n}+k^{n}} M(p, t) \tag{3.1}
\end{equation*}
$$

For $0<r<\lambda \leq 1$ and $0<\theta \leq 2 \pi$, we have

$$
p\left(\lambda e^{i \theta}\right)-p\left(r e^{i \theta}\right)=\int_{r}^{\lambda} e^{i \theta} p^{\prime}\left(t e^{i \theta}\right) d t
$$

This implies

$$
\left|p\left(\lambda e^{i \theta}\right)-p\left(r e^{i \theta}\right)\right| \leq \int_{r}^{\lambda}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which gives

$$
\left|p\left(\lambda e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{\lambda}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which further implies

$$
M(p, \lambda) \leq M(p, r)+\int_{r}^{\lambda} M\left(p^{\prime}, t\right) d t
$$

Combining the above inequality with (3.1), we get

$$
\begin{equation*}
M(p, \lambda) \leq M(p, r)+\int_{r}^{\lambda} \frac{n t^{n-1}}{t^{n}+k^{n}} M(p, t) d t \tag{3.2}
\end{equation*}
$$

If we choose

$$
\phi(\lambda)=M(p, r)+\int_{r}^{\lambda} \frac{n t^{n-1}}{t^{n}+k^{n}} M(p, t) d t
$$

then

$$
\phi^{\prime}(\lambda)=\frac{n \lambda^{n-1}}{\lambda^{n}+k^{n}} M(p, \lambda)
$$

and inequality (3.2), gives

$$
\phi^{\prime}(\lambda)-\frac{n \lambda^{n-1}}{\lambda^{n}+k^{n}} \phi(\lambda) \leq 0 .
$$

Multiplying the above inequality by $\left(\lambda^{n}+k^{n}\right)^{-1}$, we get

$$
\frac{d}{d \lambda}\left\{\left(\lambda^{n}+k^{n}\right)^{-1} \phi(\lambda)\right\} \leq 0
$$

which implies that $\left(\lambda^{n}+k^{n}\right)^{-1} \phi(\lambda)$ is a non-increasing function of λ in $(0,1)$. Therefore for $0<k<r<\lambda \leq 1$, we have

$$
\phi(r) \geq\left(\frac{r^{n}+k^{n}}{\lambda^{n}+k^{n}}\right) \phi(\lambda) .
$$

Now since $\phi(r)=M(p, r)$ and $\phi(\lambda) \geq M(p, \lambda)$, we get

$$
M(p, r) \geq\left(\frac{r^{n}+k^{n}}{\lambda^{n}+k^{n}}\right) M(p, \lambda)
$$

Which completes the proof of Theorem 1.
Proof of Theorem 2. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k, k<1$ and if $m(p, k)=\min _{|z|=k}|p(z)|$, then for every α with $|\alpha|<1$, the polynomial $p(z)-\alpha m(p, k)$ has no zero in $|z|<k, k<1$. This result is clear if $p(z)$ has a zero on $|z|=k$, for then $m(p, k)=0$ and therefore $p(z)-\alpha m(p, k)=p(z)$. In case $p(z)$ has no zero on $|z|=k$, then for every α with $|\alpha|<1$, we have $|p(z)|>|\alpha| m(p, k)$ on $|z|=k$ and on applying Rouche's theorem the result follows. Thus $p(z)-\alpha m(p, k)$ has no zero in $|z|<k, k<1$ and hence, applying inequality (1.6) to $p(z)-\alpha m(p, k)$, we get

$$
M(p-\alpha m(p, k), r) \geq\left(\frac{r^{n}+k^{n}}{1+k^{n}}\right) M(p-\alpha m(p, k), 1)
$$

which implies

$$
\begin{equation*}
M(p-\alpha m(p, k), r) \geq\left(\frac{r^{n}+k^{n}}{1+k^{n}}\right)\{M(p, 1)-|\alpha| m(p, k)\} \tag{3.3}
\end{equation*}
$$

Now choosing argument of α on left hand side of (3.3), we get

$$
M(p, r)-|\alpha| m(p, k) \geq\left(\frac{r^{n}+k^{n}}{1+k^{n}}\right)\{M(p, 1)-|\alpha| m(p, k)\}
$$

which is equivalent to

$$
M(p, r) \geq\left(\frac{r^{n}+k^{n}}{1+k^{n}}\right) M(p, 1)+\left(\frac{1-r^{n}}{1+k^{n}}\right)|\alpha| m(p, k)
$$

and letting $|\alpha| \rightarrow 1$, we get

$$
M(p, r) \geq\left(\frac{r^{n}+k^{n}}{1+k^{n}}\right) M(p, 1)+\left(\frac{1-r^{n}}{1+k^{n}}\right)|\alpha| m(p, k)
$$

This completes the proof of Theorem 2.

References

[1] Ankeny, N. C., Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
[2] Aziz, A., Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc. 35 (1987), 247-256.
[3] Govil, N. K., On a theorem of S. Bernstein, Proc. Nat. Acad. Sci. India Sect. A 50 (1980), 50-52.
[4] Pólya, G., Szegö, G., Aufgaben und Lehrsatze aus der Analysis, Springer-Verlag, Berlin, 1925.

K. K. Dewan	Sunil Hans
Department of Mathematics	Department of Mathematics
Faculty of Natural Sciences	Faculty of Natural Sciences
Jamia Millia Islamia (Central University)	Jamia Millia Islamia (Central University)
New Delhi-110025, India	New Delhi-110025, India
e-mail: kkdewan123@yahoo.co.in	e-mail: sunil.hans82@yahoo.com

Received August 12, 2008

[^0]: 2000 Mathematics Subject Classification. 30A10, 30C10, 30 E 15.
 Key words and phrases. Polynomials, inequalities, restricted zeros, growth.
 The work is supported by Council of Scientific and Industrial Research, New Delhi, under grant F.No. 9/466(95)/2007-EMR-I.

