DOI:	10.2478	/v10062-008-0005-3
------	---------	--------------------

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXII, 2008	SECTIO A	49 - 53

WALDEMAR CIEŚLAK and ELŻBIETA SZCZYGIELSKA

Circuminscribed polygons in a plane annulus

ABSTRACT. Each oval and a natural number $n \geq 3$ generate an annulus which possesses the Poncelet's porism property. A necessary and sufficient condition of existence of circuminscribed *n*-gons in an annulus is given.

1. Introduction. Let C be an oval, i.e. a plane simple closed curve with a positive curvature, see [4]. We will consider C in the form

(1.1)
$$z(t) = p(t) e^{it} + \dot{p}(t) i e^{it} \quad \text{for } t \in [0, 2\pi]$$

where p is a fixed support function (the dot denotes the differentiation with respect to t). The function $R = p + \ddot{p}$ is the radius of curvature of C, see [6].

We associate with a fixed oval C a family $\mathcal{P}(C) = \{C_m : m > 0\}$ containing all parallel curves C_m to C; the support function p_m of C_m is given by the formula

(1.2)
$$p_m(t) = p(t) + m \text{ for } t \in [0, 2\pi],$$

see [6].

Moreover, we associate with C a second family $\mathcal{I}(C) = \{C_{\alpha} : 0 < \alpha < \pi\}$ where C_{α} is an α -isoptic of C. We recall that C_{α} is a locus of vertices of a fixed angle $\pi - \alpha$ formed by two support lines of the curve C, see [3].

²⁰⁰⁰ Mathematics Subject Classification. 53A04.

Key words and phrases. Poncelet's porism, isoptics, parallel curves.

The parametric representation of C_{α} has the form

(1.3)
$$z_{\alpha}(t) = p(t)e^{it} + \frac{1}{\sin\alpha}(p(t+\alpha) - p(t)\cos\alpha)ie^{it}$$
 for $t \in [0, 2\pi]$.

We will use the following functions:

(1.4)
$$\begin{cases} q(t) = z(t) - z(t + \alpha) \\ b(t) = p(t + \alpha)\sin\alpha + \dot{p}(t + \alpha)\cos\alpha - \dot{p}(t) \\ B(t) = p(t) - p(t + \alpha)\cos\alpha + \dot{p}(t + \alpha)\sin\alpha, \end{cases}$$

see [3].

We have

(1.5)
$$q = Be^{it} - bie^{it}$$

and

$$(1.6) B>0.$$

In this paper we will consider annuli formed by two ovals called convex annuli.

We will call that a convex annulus (C, D) formed by ovals C, D possess the Poncelet's porism property if through each point of the annulus pass circuminscribed *n*-gon (simultaneously inscribed in the outer oval and circumscribed on the inner oval). Basic information on the Poncelet's porism we can find in [1] but an extensive bibliography is given in [6], [2].

2. Convex isoptics of a parallel curve.

Theorem 2.1. Let C be an oval and $\alpha \in (0, \pi)$. If the α -isoptic C_{α} is not convex then there exists a number $m^*(C, \alpha)$ such that if $m > m^*(C, \alpha)$ then each curve $C_{m,\alpha} \in \mathcal{I}(C_m)$ is an oval.

Proof. Let us fix an oval C. If for a given $\alpha \in (0, \pi)$ the α -isoptic C_{α} of C is not convex, then we find a parallel curve C_m such that its α -isoptic $C_{m,\alpha}$ is convex.

Let us fix an arbitrary m > 0. The parametric equation of C_m has the form

(2.1)
$$Z(t) = (p(t) + m) e^{it} + \dot{p}(t) i e^{it} \text{ for } t \in [0, 2\pi].$$

Let

(2.2)
$$Q(t) = Z(t) - Z(t + \alpha).$$

We have

(2.3)
$$Q = q + m (1 - \cos \alpha) e^{it} - m \sin \alpha i e^{it}$$

and

(2.4)
$$\dot{Q} = \dot{q} + m \sin \alpha e^{it} + m \left(1 - \cos \alpha\right) i e^{it}.$$

An α -isoptic $C_{m,a}$ of an oval C_m is convex if and only if

(2.5)
$$2|Q|^2 - [Q,\dot{Q}] \ge 0,$$

where $[\alpha + \beta i, \gamma + \delta i] = \alpha \delta - \beta \gamma$, see [3, Th. 5.2].

In view of (2.3) and (2.4) the left side of (2.5) has the form

$$2 |Q|^{2} - [Q, \dot{Q}]$$

$$= 2 (1 - \cos \alpha) m^{2}$$

$$+ ((1 - \cos \alpha) (3B - R - R_{\alpha}) + 3b \sin \alpha) m + 2 |q|^{2} - [q, \dot{q}]$$

$$= 2 (1 - \cos \alpha) m^{2}$$

$$+ ((1 - \cos \alpha) (3B - R - R_{\alpha}) + 3b \sin \alpha) m + k_{(\alpha)} \frac{|q|^{3}}{\sin \alpha},$$

where $k_{(\alpha)}$ is the curvature of the α -isoptic C_{α} and $R_{\alpha}(t) = R(t + \alpha)$, see [2, (5.7)].

Finally the α -isoptic of C_m is strictly convex if and only if the square inequality holds

(2.7)

$$\frac{2(1 - \cos \alpha)m^2}{+((1 - \cos \alpha)(3B - R - R_{\alpha}) + 3b\sin \alpha)m + k_{(\alpha)}\frac{|q|^3}{\sin \alpha} > 0.$$

Let $a_1(t) \le a_2(t)$ denotes roots of square equation associated with (2.7) if $\Delta_{\alpha}(t) = \left(\left(1 - \cos \alpha\right) \left(3B - R - R_{\alpha}\right) + 3b\sin \alpha\right)^2 - 8\left(1 - \cos \alpha\right) k_{(\alpha)} \frac{|q|^3}{\sin \alpha} \ge 0.$

Thus we can define a number

(2.8)
$$m^*(C,\alpha) = \max \{a_2(t) : t \in [0,2\pi], \Delta_\alpha(t) \ge 0\}$$

If $m > m^*(C, \alpha)$ then $C_{m,\alpha}$ is strictly convex. We recall that an α -isoptic of an oval is a curve of the class C^2 [3, Th. 5.1].

3. On the Poncelet's porism property. Mozgawa in [5] proved that for a given oval C there exist ovals C_{in} and C_{out} , inside and outside of C, such that the pairs (C, C_{in}) and (C_{out}, C) has the Poncelet's porism property for almost any natural number n.

In this paper we can solve the modified problem, namely: For a given oval C and a fixed natural number $n \ge 3$ find a convex annulus generated by C and n possessing the Poncelet's porism property.

It follows from the previous section that the following theorem holds:

Theorem 3.1. Let $n \geq 3$ be a fixed natural number and $\alpha = \frac{2\pi}{n}$. Let T be an arbitrary affine transformation. For each oval C and $m > m^*(C, \alpha)$ each convex annulus $(T(C_m), T(C_{m,\alpha}))$ where $C_m \in \mathcal{P}(C)$ and $C_{m,\alpha} \in \mathcal{I}(C)$ possess the Poncelet's porism property.

4. Existence of circuminscribed n-gons in a convex annulus. Let (C, D) be a convex annulus. If the inner oval C is given by (1.1) then the outer oval D will be considered in the form

(4.1)
$$w(t) = z(t) + \lambda(t) i e^{it} \quad \text{for } t \in [0, 2\pi].$$

where λ is a positive-valued function.

We note that a fixed point w(t) of D belongs to some α -isoptic C_{α} . From (1.3) and (4.1) we get the implicit equation for α , namely

(4.2)
$$(\dot{p}(t) + \lambda(t)) \sin \alpha - p(t + \alpha) + p(t) \cos \alpha = 0.$$

Let $F(t, \alpha) = (\dot{p}(t) + \lambda(t)) \sin \alpha - p(t + \alpha) + p(t) \cos \alpha.$ Then we have
$$\frac{\partial F}{\partial \alpha} = (\dot{p} + \lambda) \cos \alpha - \dot{p}_{\alpha} - p \sin \alpha$$
$$= \frac{-B + [p(t) \cos \alpha - p(t + \alpha) + (\dot{p}(t) + \lambda(t)) \sin \alpha] \cos \alpha}{\sin \alpha}$$
$$= \frac{-B}{\sin \alpha} < 0.$$

Applying the implicit function theorem we have a differentiable function $\alpha(t)$. Let

(4.3)
$$\varphi(t) = t + \alpha(t)$$

and $\varphi^{[1]} = \varphi, \ \varphi^{[n]} = \varphi \circ \varphi^{[n-1]}$ for $n = 2, 3, \ldots$ The following theorems hold:

Theorem 4.1. There exists circuminscribed n-gon in a convex annulus (C, D) if and only if the equation $\varphi^{[n]}(t) - t - 2\pi = 0$ has a solution in the interval $[0, 2\pi]$.

Theorem 4.2. A convex annulus (C, D) possess the Poncelet's porism property if and only if for some natural number $n \ge 3$ the function $\varphi^{[n]}(t) - t - 2\pi$ vanish.

Applications of Theorem 4.2 will be given in the other paper.

References

- [1] Berger, M., Geometry I, Springer-Verlag, New York, 1994.
- [2] Bos, H. J. M., Kers, C., Oort, F. and Raven, D. W., Poncelet's closure theorem, Exposition. Math. 5 (1987), 289–364.
- [3] Cieślak, W., Miernowski, A. and Mozgawa, W., *Isoptics of a closed strictly convex curve*, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28–35.
- [4] Laugwitz, D., Differential and Riemannian Geometry, Academic Press, New York– London, 1965.
- [5] Mozgawa, W., Bar billiards and Poncelet's porism, to appear.
- [6] Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and Its Applications, Vol. 1, Addison–Wesley Publishing Co., Reading, Mass.– London–Amsterdam, 1976.

[7] Weisstein, E. W., *Poncelet's Porism*, From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html

Elżbieta Szczygielska
Państwowa Wyższa Szkoła Zawodowa
w Białej Podlaskiej
ul. Sidorska 95/97
21-500 Biała Podlaska, Poland

Received April 7, 2008