ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
 LUBLIN - POLONIA

VOL. LXII, 2008
SECTIO A
49-53

WALDEMAR CIEŚLAK and ELŻBIETA SZCZYGIELSKA

Circuminscribed polygons in a plane annulus

Abstract

Each oval and a natural number $n \geq 3$ generate an annulus which possesses the Poncelet's porism property. A necessary and sufficient condition of existence of circuminscribed n-gons in an annulus is given.

1. Introduction. Let C be an oval, i.e. a plane simple closed curve with a positive curvature, see [4]. We will consider C in the form

$$
\begin{equation*}
z(t)=p(t) e^{i t}+\dot{p}(t) i e^{i t} \quad \text { for } t \in[0,2 \pi], \tag{1.1}
\end{equation*}
$$

where p is a fixed support function (the dot denotes the differentiation with respect to t). The function $R=p+\ddot{p}$ is the radius of curvature of C, see [6].

We associate with a fixed oval C a family $\mathcal{P}(C)=\left\{C_{m}: m>0\right\}$ containing all parallel curves C_{m} to C; the support function p_{m} of C_{m} is given by the formula

$$
\begin{equation*}
p_{m}(t)=p(t)+m \quad \text { for } t \in[0,2 \pi], \tag{1.2}
\end{equation*}
$$

see [6].
Moreover, we associate with C a second family $\mathcal{I}(C)=\left\{C_{\alpha}: 0<\alpha<\pi\right\}$ where C_{α} is an α-isoptic of C. We recall that C_{α} is a locus of vertices of a fixed angle $\pi-\alpha$ formed by two support lines of the curve C, see [3].

[^0]The parametric representation of C_{α} has the form

$$
\begin{equation*}
z_{\alpha}(t)=p(t) e^{i t}+\frac{1}{\sin \alpha}(p(t+\alpha)-p(t) \cos \alpha) i e^{i t} \quad \text { for } t \in[0,2 \pi] . \tag{1.3}
\end{equation*}
$$

We will use the following functions:

$$
\left\{\begin{align*}
q(t) & =z(t)-z(t+\alpha) \tag{1.4}\\
b(t) & =p(t+\alpha) \sin \alpha+\dot{p}(t+\alpha) \cos \alpha-\dot{p}(t) \\
B(t) & =p(t)-p(t+\alpha) \cos \alpha+\dot{p}(t+\alpha) \sin \alpha,
\end{align*}\right.
$$

see [3].
We have

$$
\begin{equation*}
q=B e^{i t}-b i e^{i t} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
B>0 . \tag{1.6}
\end{equation*}
$$

In this paper we will consider annuli formed by two ovals called convex annuli.

We will call that a convex annulus (C, D) formed by ovals C, D possess the Poncelet's porism property if through each point of the annulus pass circuminscribed n-gon (simultaneously inscribed in the outer oval and circumscribed on the inner oval). Basic information on the Poncelet's porism we can find in [1] but an extensive bibliography is given in [6], [2].

2. Convex isoptics of a parallel curve.

Theorem 2.1. Let C be an oval and $\alpha \in(0, \pi)$. If the α-isoptic C_{α} is not convex then there exists a number $m^{*}(C, \alpha)$ such that if $m>m^{*}(C, \alpha)$ then each curve $C_{m, \alpha} \in \mathcal{I}\left(C_{m}\right)$ is an oval.
Proof. Let us fix an oval C. If for a given $\alpha \in(0, \pi)$ the α-isoptic C_{α} of C is not convex, then we find a parallel curve C_{m} such that its α-isoptic $C_{m, \alpha}$ is convex.

Let us fix an arbitrary $m>0$. The parametric equation of C_{m} has the form

$$
\begin{equation*}
Z(t)=(p(t)+m) e^{i t}+\dot{p}(t) i e^{i t} \quad \text { for } t \in[0,2 \pi] . \tag{2.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
Q(t)=Z(t)-Z(t+\alpha) \tag{2.2}
\end{equation*}
$$

We have

$$
\begin{equation*}
Q=q+m(1-\cos \alpha) e^{i t}-m \sin \alpha i e^{i t} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{Q}=\dot{q}+m \sin \alpha e^{i t}+m(1-\cos \alpha) i e^{i t} . \tag{2.4}
\end{equation*}
$$

An α-isoptic $C_{m, a}$ of an oval C_{m} is convex if and only if

$$
\begin{equation*}
2|Q|^{2}-[Q, \dot{Q}] \geq 0 \tag{2.5}
\end{equation*}
$$

where $[\alpha+\beta i, \gamma+\delta i]=\alpha \delta-\beta \gamma$, see [3, Th. 5.2].
In view of (2.3) and (2.4) the left side of (2.5) has the form

$$
\begin{align*}
2|Q|^{2}- & {[Q, \dot{Q}] } \\
= & 2(1-\cos \alpha) m^{2} \\
& +\left((1-\cos \alpha)\left(3 B-R-R_{\alpha}\right)+3 b \sin \alpha\right) m+2|q|^{2}-[q, \dot{q}] \tag{2.6}\\
= & 2(1-\cos \alpha) m^{2} \\
& +\left((1-\cos \alpha)\left(3 B-R-R_{\alpha}\right)+3 b \sin \alpha\right) m+k_{(\alpha)} \frac{|q|^{3}}{\sin \alpha},
\end{align*}
$$

where $k_{(\alpha)}$ is the curvature of the α-isoptic C_{α} and $R_{\alpha}(t)=R(t+\alpha)$, see [2, (5.7)].

Finally the α-isoptic of C_{m} is strictly convex if and only if the square inequality holds

$$
\begin{align*}
& 2(1-\cos \alpha) m^{2} \\
& \quad+\left((1-\cos \alpha)\left(3 B-R-R_{\alpha}\right)+3 b \sin \alpha\right) m+k_{(\alpha)} \frac{|q|^{3}}{\sin \alpha}>0 . \tag{2.7}
\end{align*}
$$

Let $a_{1}(t) \leq a_{2}(t)$ denotes roots of square equation associated with (2.7) if

$$
\Delta_{\alpha}(t)=\left((1-\cos \alpha)\left(3 B-R-R_{\alpha}\right)+3 b \sin \alpha\right)^{2}-8(1-\cos \alpha) k_{(\alpha)} \frac{|q|^{3}}{\sin \alpha} \geq 0
$$

Thus we can define a number

$$
\begin{equation*}
m^{*}(C, \alpha)=\max \left\{a_{2}(t): t \in[0,2 \pi], \quad \Delta_{\alpha}(t) \geq 0\right\} \tag{2.8}
\end{equation*}
$$

If $m>m^{*}(C, \alpha)$ then $C_{m, \alpha}$ is strictly convex. We recall that an α-isoptic of an oval is a curve of the class $C^{2}[3, \mathrm{Th} .5 .1]$.
3. On the Poncelet's porism property. Mozgawa in [5] proved that for a given oval C there exist ovals $C_{i n}$ and $C_{o u t}$, inside and outside of C, such that the pairs $\left(C, C_{\text {in }}\right)$ and $\left(C_{\text {out }}, C\right)$ has the Poncelet's porism property for almost any natural number n.

In this paper we can solve the modified problem, namely: For a given oval C and a fixed natural number $n \geq 3$ find a convex annulus generated by C and n possessing the Poncelet's porism property.

It follows from the previous section that the following theorem holds:
Theorem 3.1. Let $n \geq 3$ be a fixed natural number and $\alpha=\frac{2 \pi}{n}$. Let T be an arbitrary affine transformation. For each oval C and $m>m^{*}(C, \alpha)$ each convex annulus $\left(T\left(C_{m}\right), T\left(C_{m, \alpha}\right)\right)$ where $C_{m} \in \mathcal{P}(C)$ and $C_{m, \alpha} \in \mathcal{I}(C)$ possess the Poncelet's porism property.
4. Existence of circuminscribed n-gons in a convex annulus. Let (C, D) be a convex annulus. If the inner oval C is given by (1.1) then the outer oval D will be considered in the form

$$
\begin{equation*}
w(t)=z(t)+\lambda(t) i e^{i t} \quad \text { for } t \in[0,2 \pi] . \tag{4.1}
\end{equation*}
$$

where λ is a positive-valued function.
We note that a fixed point $w(t)$ of D belongs to some α-isoptic C_{α}. From (1.3) and (4.1) we get the implicit equation for α, namely

$$
\begin{equation*}
(\dot{p}(t)+\lambda(t)) \sin \alpha-p(t+\alpha)+p(t) \cos \alpha=0 . \tag{4.2}
\end{equation*}
$$

Let $F(t, \alpha)=(\dot{p}(t)+\lambda(t)) \sin \alpha-p(t+\alpha)+p(t) \cos \alpha$. Then we have

$$
\begin{aligned}
\frac{\partial F}{\partial \alpha} & =(\dot{p}+\lambda) \cos \alpha-\dot{p}_{\alpha}-p \sin \alpha \\
& =\frac{-B+[p(t) \cos \alpha-p(t+\alpha)+(\dot{p}(t)+\lambda(t)) \sin \alpha] \cos \alpha}{\sin \alpha} \\
& =\frac{-B}{\sin \alpha}<0
\end{aligned}
$$

Applying the implicit function theorem we have a differentiable function $\alpha(t)$. Let

$$
\begin{equation*}
\varphi(t)=t+\alpha(t) \tag{4.3}
\end{equation*}
$$

and $\varphi^{[1]}=\varphi, \varphi^{[n]}=\varphi \circ \varphi^{[n-1]}$ for $n=2,3, \ldots$. The following theorems hold:

Theorem 4.1. There exists circuminscribed n-gon in a convex annulus (C, D) if and only if the equation $\varphi^{[n]}(t)-t-2 \pi=0$ has a solution in the interval $[0,2 \pi]$.
Theorem 4.2. A convex annulus (C, D) possess the Poncelet's porism property if and only if for some natural number $n \geq 3$ the function $\varphi^{[n]}(t)-t-2 \pi$ vanish.

Applications of Theorem 4.2 will be given in the other paper.

References

[1] Berger, M., Geometry I, Springer-Verlag, New York, 1994.
[2] Bos, H. J. M., Kers, C., Oort, F. and Raven, D. W., Poncelet's closure theorem, Exposition. Math. 5 (1987), 289-364.
[3] Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35.
[4] Laugwitz, D., Differential and Riemannian Geometry, Academic Press, New YorkLondon, 1965.
[5] Mozgawa, W., Bar billiards and Poncelet's porism, to appear.
[6] Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and Its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
[7] Weisstein, E. W., Poncelet's Porism, From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html

Waldemar Cieślak
Zakład Matematyki
Politechnika Lubelska
ul. Nadbystrzycka 40
20-618 Lublin, Poland

Elżbieta Szczygielska
Państwowa Wyższa Szkoła Zawodowa
w Białej Podlaskiej
ul. Sidorska 95/97
21-500 Biała Podlaska, Poland

Received April 7, 2008

[^0]: 2000 Mathematics Subject Classification. 53A04.
 Key words and phrases. Poncelet's porism, isoptics, parallel curves.

