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Reduction of absorbing Markov chain

Abstract. In this paper we consider an absorbing Markov chain with finite
number of states. We focus especially on random walk on transient states. We
present a graph reduction method and prove its validity. Using this method
we build algorithms which allow us to determine the distribution of time
to absorption, in particular we compute its moments and the probability of
absorption. The main idea used in the proofs consists in observing a non-
decreasing sequence of stopping times. Random walk on the initial Markov
chain observed exclusively in the stopping times τ1, τ2, . . . is equivalent to
some new Markov chain.

1. Introduction and notation. A comprehensive study of Markov chain
can be found in many monographs on the foundation of probability theory
e.g. [1], [5]. Some methods of computing the probability of absorption and
the moments of time to absorption are known in the literature. For example
the mean value rules (see [10], [3], or [7]) or Engel’s probabilistic abacus
(see [3], [4] or [11]) can be used to compute expected time to absorption and
probabilities of absorption. To obtain the moments of the time to absorption
one can use the method based on algebraic properties of fundamental matrix
for an absorbing Markov chain (see [7] Theorem 3.2, [8]). Nevertheless we
present different probabilistic technique which allows us to determine not
only moments of the time to absorption but also its distribution. We use
a “graph reduction method”. Up to now only some specific examples of
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the graph reduction method were described (cf. [11]) and probabilities of
absorption were computed for them.

In our opinion in publications cited above described techniques and algo-
rithms demand more rigorous arguments. In this paper we present uniform
proofs utilizing a technique, which can be called roughly speaking, a graph
reduction. It consists in observing the Markov chain in time moments being
an increasing sequence of stopping times. Some special class of an increa-
sing sequence of stopping times (so-called strategies) will be crucial. The
fundamental Theorem 2.1 describes the strategies and shows the character
of our algorithms.

Recent research into absorbing Markov chains is focused on their appli-
cations inter alia in biology (see for instance [6] and the references given
there) and in industrial engineering (see [2]). In [9] some properties of fun-
damental matrix for an absorbing Markov chain are used to solve Possion’s
equation with Dirichlet boundary condition. In [6] a Lyapunov-type suffi-
cient condition for absorbing Markov chains on a countable state space to
almost surely reach the absorbing set is given. Some generalizations of the
player ruin problem are set up as a multivariate absorbing Markov chain
and solved in [12].

In this paper we identify a Markov chain with its state space, initial state
and transition matrix. We will consider a sequence of absorbing Markov
chains starting in a one fixed state, with values in a finite state spaces
W0 ⊃ W1 ⊃ W2 . . . and with the transition matrices g0, g1, g2, . . . respec-
tively. Recall that g is a transition matrix if g : W ×W 7→ [0, 1] satisfy∑

a2∈W g (a1, a2) = 1 for all a1 ∈W . We set notation:

x=(x0, x1, x2, . . .) ∈WN
0 , y = (y0, y1, y2, . . .) ∈WN

1

for the trajectories of first two Markov chains in the mentioned sequence.
Denote by xn : WN

0 7→ W0, yn : WN
1 7→ W1 the projections: xn (x) := xn,

x ∈ WN
0 and yn (y) := yn, y ∈ WN

1 . All considered Markov chains start in
the fixed initial state e ∈Wi, i = 0, 1, 2, . . ., so we can denote by Xi the sets
of those (z0, z1, . . .) ∈WN

i for which z0 = e. Let a = (a0, a1, . . . , an) ∈Wn+1
0

and b = (b0, b1, . . . , bn) ∈ Wn+1
1 be some paths of length n. If a0 = e we

denote by C0
a the cylinder sets in X0, determined by a, i.e.:

(1.1) C0
a = {x ∈ X0 : (x0, x1, . . . , xn) = (a0, a1, . . . , an)} .

If b0 = e, in a similar way we define cylinder set C1
b in X1. The cylinder sets

generate natural filtrations {Cn}n∈N,
{
C1n
}
n∈N in X0, X1 for the observed

Markov chains i.e.

(1.2) Cn =
{
C0
a : a ∈Wn+1

0 , a0 = e
}
, C1n =

{
C1
b : b ∈Wn+1

1 , b0 = e
}

.
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In
(
X0, σ

(
{Cn}n∈N

))
and

(
X1, σ

({
C1n
}
n∈N
))

we define probability measures
P and P 1 by

(1.3)
P
(
C0
a

)
= g0 (e, a1) g0 (a1, a2) . . . g0 (an−1, an) , C0

a ∈ Cn,
P 1
(
C1
b

)
= g1 (e, b1) g1 (b1, b2) . . . g1 (bn−1, bn) , C1

b ∈ C1n.

We also use the following short notation for the conditional probabilities

(1.4) Pa (·) = P
(
·|C0

a

)
and P 1

b (·) = P 1
(
·|C1

b

)
.

On the grounds of methods which we focus on and the tradition of Płocki’s
book [11] we use the terminology.

Definition 1.1. The pair ((W0, g0) ; e) is called stochastic graph (or an
absorbing Markov chain) if

(1) g0 :W0×W0 7→ [0, 1] is stochastic matrix, e ∈W0 (thus ((W0, g0) ; e)
is a Markov chain);

(2) there exists the set S ⊂W0 of absorbing states i.e. s ∈ S if g0 (s, s) =
1;

(3) ∀(a∈W0\S) ∃(n∈N,a∈Wn
0 ) g0 (a, a1) g0 (a1, a2) . . . g0 (an−1, an) g0 (an, s)

> 0 for some s ∈ S;
(4) ∀(s∈S)∃(n∈N, a∈Wn

0 ) g0 (e, a1) g0 (a1, a2) . . . g0 (an−1, an) g0 (an, s)> 0.

From now on, we consider a fixed stochastic graph ((W0, g0) ; e). Let p (s)
denote the probability of absorption in the state s ∈ S i.e. (cf. (1.3))

(1.5) p (s) = P

(⋃
n∈N
{x ∈ X0 : xn (x) = s}

)
.

By the definition of stochastic graph it is easy to see that for the proba-
bilities p (s) we have

∑
s∈S p (s) = 1.

Recall that τ : X0 7→ N is a stopping time for the filtration {Cn}n∈N
(cf. (1.2)) if {x : τ (x) = m} ∈ Cm for all m ∈ N. Denote by

Fτ = {A ⊂ X0 : ∀m∈N A ∩ {τ = m} ∈ Cm}

the σ-algebra generated by τ . We define xτ : X0 7→W0 by xτ (x) := xτ(x)(x).
The paper is organized as follows. In the next section we introduce the

notions of strategy and reduced graph. The strategy is a special sequence
of stopping times τ0 < τ1 < τ2 . . . and the reduced graph is roughly speak-
ing a pair (W1, g1) obtained by observing the initial Markov chain only in
the time moments τ0, τ1, τ2, . . .. In Section 3 some special reduced graphs
are presented and used to compute the probabilities to absorption. The
last section introduces methods of computing the distribution of time to
absorption. Then we use our method to solve a classical problem in game
theory.
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2. Strategy. In this section we make specific the above-mentioned con-
cepts of strategy and reduced graph. Next, we formulate and prove Theo-
rem 2.1, which states that a reduced graph obtained from a reduced graph
is still a reduced graph. Theorem 2.1 is not trivial and is a basis for conve-
nient algorithms proposed in Section 3 for efficient calculations (which can
also be done numerically) of probability to absorption.

More precisely, for the aims being realized in Section 4 we formulate
a theorem about the graph reduction in a stronger form, after definition of
a sequence τ0 < τ1 < τ2 . . . being a strong strategy and the definition of
a strong reduced graph (Definitions 2.1, 2.2).

We believe that the role of assertions of the type above-mentioned have
been underestimated.

Definition 2.1. An increasing sequence τ0, τ1, τ2, . . . of stopping times for
the filtration {Cn}n∈N is called (W1, g1)-strategy if (cf. (1.1)–(1.4)):

(1) xτn : X0 7→W1 for n ≥ 0.
(2) For all m ≥ n ≥ 0 and for a ∈Wm+1

0 satisfying a0 = e, P
(
C0
a

)
> 0

and τn = m on whole cylinder C0
a we have, for am = b1

(2.1) Pa

(
xτn = b1, xτn+1 = b2

)
= g1 (b1, b2) for all b2 ∈W1.

Lemma 2.1. Let τ0, τ1, τ2, . . . be a (W1, g1)-strategy for the filtration
{Cn}n∈N. For all k ≥ 1, m ≥ n ≥ 0 and for a ∈ Wm+1

0 satisfying a0 = e,
P
(
C0
a

)
> 0 and τn = m on C0

a we have, for am = b1 ∈W1

(2.2)
Pa

(
xτn = b1, xτn+1 = b2, . . . , xτn+k = bk+1

)
= g1 (b1, b2) g1 (b2, b3) . . . g1 (bk, bk+1)

for all b2, . . . , bk+1 ∈W1.

Proof. Suppose that (2.2) is true for some k > 1, then for k + 1 we have

Pa

(
xτn = b1, xτn+1 = b2, . . . , xτn+k+1

= bk+2

)
= Pa

(
xτn+k+1

= bk+2|xτn = b1, xτn+1 = b2, . . . , xτn+k = bk+1

)
× g1 (b1, b2) . . . g1 (bk, bk+1) .

It is sufficient to show that

(2.3)
Pa

(
xτn+k+1

= bk+2|xτn = b1, xτn+1 = b2, . . . , xτn+k = bk+1

)
= g1 (bk+1, bk+2) .

Notice that
{
xτn = b1, xτn+1 = b2, . . . , xτn+k = bk+1

}
is a sum of some cylin-

der sets C0
d, d ∈W l

0 such that

τn+k = l on Cd and dl = bk+1,

then from the definition of (W1, g1)-strategy we obtain (2.3) . �
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Definition 2.2. A pair ((W1, g1) , e) is called a reduced graph obtained from
((W0, g0) , e) if there exists a (W1, g1)-strategy on X0.

In the case described by Definition 2.2 we also say that a reduced graph
((W1, g1) , e) is determined by the (W1, g1)-strategy τ0, τ1, τ2, . . . on X0 or
shortly that ((W1, g1) , e) is obtained from ((W0, g0) ; e) by τ0, τ1, τ2, . . ..
From the definition of (W1, g1)-strategy τ0, τ1, τ2, . . . it is easy to see that
((W1, g1) , e) is a stochastic graph on

(
X1, σ

({
C1n
}
n∈N
)
, P 1

)
(cf. (1.3)). No-

tice that S is again the set of absorbing states in ((W1, g1) , e) since τn 7→ ∞
(on whole X0). We also obtain surjective measurable transformation Y :
X0 7→ X1 such that

(2.4) Y ((x0, x1, x2, . . .)) := (xτ0 , xτ1 , xτ2 , )

and, by Lemma 2.1, cf. (2.2),

(2.5) P 1 = P ◦ Y −1.
We can identify y ∈ X1 with the set {x ∈ X0 : Y (x) = y} ⊂ X0. Notice that
every sequence of stopping times η0, η1, η2, . . . for the filtration

{
C1n
}
n∈N on

X1 (cf. (1.2)) determines a sequence of stopping times (η̃0, η̃1, η̃2, . . .) for the
filtration {σ (xτ0 , xτ1 , . . . , xτn)}n∈N on

(
X0, σ

(
{Cn}n∈N

)
, P
)

in the following
way

(2.6) η̃i (x) := ηi (Y (x)) , i = 0, 1, 2, . . .

Denote by p1 (s) = P 1
(⋃

n∈N {yn = s}
)

the probability of absorption in
the stochastic graph ((W1, g1) , e).

Lemma 2.2. For all s ∈ S the following holds p (s) = p1 (s) .

Proof. Fix s ∈ S. From (2.5) we have p1 (s) = P
(⋃

n∈N {xτn = s}
)
. Hence

it is enough to prove that
⋃
n∈N {xn = s} ⊂

⋃
n∈N {xτn = s}. Indeed, if

x ∈
⋃
n∈N {xn = s}, then there exist n ≥ 1 and a ∈ Wn

0 , a0 = e such that
x ∈ C0

a ∩ {xn = s}. Since τk 7→ ∞ a.s. and for every k ∈ N , τk < ∞ a.s.,
then there exist m ≥ 0 and k ≥ 1 such that τk (x) = n + m. Therefore
xτk (x) = s. �

As we said at the beginning of this section we need to consider strategies
with some additional property, namely times between visiting state b2 ∈W1

from being in the state b1 ∈W1 are conditionally independent:

Definition 2.3. A (W1, g1)-strategy (τ0, τ1, τ2, . . .) for the filtration {Cn}n∈N
is called a (W1, g1)-strong strategy, if for any b1, b2 ∈W1 there exists a func-
tion N 3 k 7→ g

(k)
1 (b1, b2) ∈ [0, 1] defined by

g
(k)
1 (b1, b2) := Pa

(
τn+1 − τn = k, xτn+1 = b2, xτn = b1

)
, k ≥ 1,

for any n ≥ m ≥ 0 and for any a ∈ Wm+1
0 such that a0 = e, P

(
C0
a

)
> 0,

am = b1 and τn = m on C0
a. In this case we call the pair ((W1, g1) , e)

a strong reduced graph.
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We denote by

(2.7)

p
(·)
1 (b1, b2) = Pa

(
τn+1 − τn = ·|xτn = b1, xτn+1 = b2

)
=

{
g
(·)
1 (b1,b2)
g1(b1,b2)

if g1 (b1, b2) > 0,

0 if g1 (b1, b2) = 0,

the probability distribution of time of transition in “one step” between the
states b1 and b2 in the strong reduced graph ((W1, g1) , e).

Let mn
1 (a, b) =

∑∞
i=1 i

np
(i)
1 (a, b) denote the nth moment of distribution

p
(·)
1 (a, b). With the strong reduced graph ((W1, g1) , e) we connect the ma-

trix P1 =
[
p
(·)
1 (a, b)

]
a,b∈W1

of distributions of time of transition in “one
step” between the states W1 and the sequence of matrices of its moments
{Mn

1 }n∈N, where Mn
1 = [mn

1 (a, b)]a,b∈W1
, n ∈ N. We shortly call Mn

1 the
matrix of nth moments for the strong reduced graph ((W1, g1) , e).

For a fixed b = (b1, b2, . . . , bm) ∈ Wm
1 denote by p(·)1 b the convolution of

distributions p(·)1 (b1, b2) , p
(·)
1 (b2, b3) , . . . , p

(·)
1 (bm−1, bm) i.e.

p
(k)
1 b =

k−1∑
i1=1

i1∑
i2=1

. . .

im−3∑
im−2=1

p
(k−i1)
1 (b1, b2) p

(i1−i2)
1 (b2, b3) . . . p

(im−2)
1 (bm−1, bm)

and by mn
1b the nth moment of distribution p

(·)
1 b.

Lemma 2.3. For any m, l ∈ N and for any b ∈Wm+1
1 , a ∈W l+1

0 satisfying
a0 = e, al = b0, Pa

((
xτn , xτn+1 , . . . , xτn+m

)
= b
)
> 0 and τn = l on C0

a we
have

(2.8) Pa

(
τn+m − τn = ·|

(
xτn , xτn+1 , . . . , xτn+m

)
= b
)
= p

(·)
1 b.

Proof. The proof is done by induction with respect to m. For m = 1 (2.8)
is satisfied by the definition of strong strategy τ0, τ1, . . .. Suppose that (2.8)
holds for m > 1. We show that (2.8) is true for m+1. Indeed, let b ∈Wm+2

1 ,
a ∈ W l+1

0 satisfy a0 = e, al = b0, Pa

((
xτn , xτn+1 , . . . , xτn+m+1

)
= b
)
> 0

and τn = l on C0
a, then

(2.9)

Pa

(
τn+m+1 − τn = k|

(
xτn , . . . , xτn+m+1

)
= b
)

=
∑
i

[
Pa

(
τn+m+1 − τn = k|

(
xτn , . . . , xτn+m+1

)
= b, τn+1 − τn = i

)
× Pa

(
τn+1 − τn = i|

(
xτn , . . . , xτn+m+1

)
= b
)]
.

Notice that from the definition of ((W1, g1) , e)-strong strategy τ0, τ1, . . . we
have

(2.10)
Pa

(
τn+1 − τn = i|

(
xτn , . . . , xτn+m+1

)
= b
)

= Pa

(
τn+1 − τn = i|xτn = b0, xτn+1 = b1

)
= p

(i)
1 (b0, b1)
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(cf. (2.7)) and from the inductive assumption we get

(2.11)

Pa

(
τn+m+1 − τn = k|xτn = b0, . . . , xτn+m = bm, τn+1 − τn = i

)
= Pa

(
τn+m+1 − τn+1 = k − i|

τn+1 = i+ l, xτn+1 = b1, . . . , xτn+m = bm
)

= p
(k−i)
1 (b1, . . . , bm+1) .

By combining (2.10) and (2.11) with (2.9) we obtain the desired formula

Pa

(
τn+m+1 − τn = k|

(
xτn , xτn+1 , . . . , xτn+m+1

)
= b
)
= p

(k)
1 b. �

Now we formulate the main result on reduced graph and strong reduced
graph.

Theorem 2.1. If ((W1, g1) , e) is a reduced (strong reduced) graph obtained
from ((W0, g0) , e) and ((W2, g2) , e) is a reduced (strong reduced) graph
obtained from ((W1, g1) , e), then ((W2, g2) , e) is the reduced (respectively
strong reduced) graph obtained from ((W0, g0) , e).

In the proof of Theorem 2.1 there is among other things the following
subtlety: a (W1, g1)-strategy τ0, τ1, τ2, . . . is defined on

(
X0, σ

(
{Cn}n∈N

)
, P
)

while a (W2, g2)-strategy η0, η1, η2, . . . is connected with different Markov
chain ((W1, g1), e) and defined on

(
X1, σ

({
C1n
}
n∈N
)
, P 1

)
being the canonical

space for this Markov chain. Obviously, since ((W1, g1), e) is a reduced graph
obtained from ((W0, g0), e), then η0, η1, η2, . . . generate a sequence of random
variables on

(
X0, σ

(
{Cn}n∈N

)
, P
)

given by (2.6).

Proof. Since the theorem covers two cases, we divide the proof into two
parts. First we prove the version for a reduced graph, after that we show
the assertion of the theorem for a strong reduced graph.

Let τ0, τ1, τ2, . . . be a (W1, g1)-strategy for the filtration {Cn}n∈N and η0,
η1, η2, . . . be a (W2, g2)-strategy for the filtration

{
C1n
}
n∈N. From (2.6) we get

a sequence of random variables η̃0, η̃1, η̃2, . . .. We show that (τη̃0 , τη̃1 , τη̃2 , . . .)
is (W2, g2) -strategy for the filtration {Cn}n∈N.

Obviously τη̃0 < τη̃1 < τη̃2 , . . . and for any n,m ∈ N we have

{τη̃n = m} =
⋃
k∈N
{τk = m, η̃n = k} ∈ Cm

by {η̃n = k} ∈ σ (xτ0 , xτ1 , . . . , xτk) ⊂ Fτk . By the definition of (η0, η1, η2, . . .)
we see that for any n ∈ N measurable function xτη̃non X0 takes value in W2.

Let l, n ∈ N and a ∈ W l+1
0 be such that a0 = e, P

(
C0
a

)
> 0, al = a and

τη̃n = l on C0
a. Then there exist m ≤ l and b ∈Wm+1

1 , b0 = e, bm = a such
that

τm (x) = l, η̃n (x) = m and (xτ0 , xτ1 , . . . , xτm) (x) = b



98 M. Górajski

for all x ∈ C0
a and

{(xτ0 , xτ1 , . . . , xτm) = b} ⊂ {η̃n = m} .

From the last inclusion and the fact that Y is surjective we get

C1
b = Y

(
Y −1

(
C1
b

))
= Y ({(xτ0 , xτ1 , . . . , xτm) = b}) ⊂ {ηn = m} .

We show that for any c ∈W2 we have

(2.12) P
(
xτη̃n = a, xτη̃n+1

= c|C0
a

)
= g2 (a, c) .

On C1
b ⊂ X1 we have a probability measure P 1

b for which Pa generates P 1
b

i.e.

(2.13) P 1
b = Pa ◦ Y −1.

Indeed, notice that from the definition of Y we have

Y −1
(
C1
(e,b1,...,bm+k)

)
=
{
x ∈ X0 :

(
xτ0 , xτ1 , . . . , xτm+k

)
(x) = (e, b1, . . . , bm+k)

}
,

for any bm+1, . . . , bm+k ∈W1. Hence from Lemma 2.1 we get

Pa

(
Y −1

(
C1
b

))
= g1 (bm, bm+1) . . . g1 (bm+k−1, bm+k) .

Thus (2.13) have been proved.
From the definition of (η0, η1, η2, . . .) and (2.13) for m > n and C1

b we
can write

(2.14) g2 (a, c) = P 1
b

(
yηn = a, yηn+1 = c

)
= Pa ◦Y −1

(
yηn = a, yηn+1 = c

)
,

for any c ∈W2. To finish the proof notice that

Y −1
(
yηn = a, yηn+1 = c

)
=
{
x ∈ X0 : Y (x) ∈

{
yηn = a, yηn+1 = c

}}
=
{
x ∈ X0 : xτη̃n = a, xτη̃n+1

= c
}
.

Then from (2.14) we finally obtain (2.12), which implies that (τη̃0, τη̃1, τη̃2, . . .)
is a (W2, g2)-strategy for the filtration {Cn}n∈N.

Now assume additionally that (τ0, τ1, τ2, . . .) is a (W1, g1)-strong strategy
for the filtration {Cn}n∈N and (η0, η1, η2, . . .) is a (W2, g2)-strong strategy for
the filtration

{
C1n
}
n∈N. We show that (τη̃0 , τη̃1 , τη̃2 , . . .) is a (W2, g2)-strong

strategy for the filtration {Cn}n∈N.
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Indeed, for any k ∈ N

(2.15)

Pa

(
τη̃n+1 − τη̃n = k, xτη̃n+1

= c, xτη̃n = a
)

=
∑

1≤i≤k
Pa

(
τη̃n+1 − τη̃n = k, xτη̃n+1

= c, xτη̃n = a, η̃n+1 − η̃n = i
)

=
∑

1≤i≤k

[
Pa

(
τm+i − τm = k|xτm = a, xτm+i = c, η̃n+1 − η̃n = i

)
× Pa

(
η̃n+1 − η̃n = i, xτm = a, xτm+i = c

)]
.

Since C0
a ⊂ {τm = l, η̃n = m} and by (2.13) we have

Pa

(
xτm = a, xτm+i = c, η̃n+1 − η̃n = i

)
= P 1

b

(
yηn+1 = a, yηn = c, ηn+1 − ηn = i

)
= g

(i)
2 (a, c) .

Then the equality{
xτm = a, xτm+i = c, η̃n+1 − η̃n = i

}
∩ C0

a

=
⋃

c∈I(i,a,c)

C0
a ∩

{(
xτm , xτm+1 , . . . , xτm+i−1 , xτm+i

)
= c
}

holds for some set I (i, a, c) ⊂ W i+1
1 depending on some i, a and c, such

that ci = c, c0 = a. Hence, and from (2.15) we get

Pa

(
τη̃n+1 − τη̃n = k, xτη̃n+1

= c, xτη̃n = a
)

=
∑

1≤i≤k
Pa

(
τm+i − τm = k|

⋃
c∈I(i,a,c)

{(
xτm , . . . , xτm+i

)
= c
})

g
(i)
2 (a, c)

=
∑

1≤i≤k

∑
c∈I(i,a,c)

Pa

(
τm+i − τm= k|

(
xτm , . . . , xτm+i

)
= c
)
g1(a, c1) . . . g1(ci−1, c)∑

c∈I(i,a,c)
g1 (a, c1) . . . g1 (ci−1, c)

× g(i)2 (a, c) .

Using Lemma 2.3 we get

(2.16)

Pa

(
τη̃n+1 − τη̃n = k, xτη̃n+1

= c, xτη̃n = a
)

=
∑

1≤i≤k

∑
c∈I(i,a,c) p

(k)
1 c g1 (a, c1) . . . g1 (ci−1, c)∑

c∈I(i,a,c) g1 (a, c1) . . . g1 (ci−1, c)
g
(i)
2 (a, c)

and we can define function N 3 k 7→ g̃
(k)
2 (a, c) ∈ [0, 1] by

�(2.17) g̃
(k)
2 (a, c) := Pa

(
τη̃n+1 − τη̃n = k, xτη̃n+1

= c, xτη̃n = a
)

.
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Now, we see that every reduced graph has less states than its initial one.
At the same time each reduced graph has the initial state e and the set
S of absorbing states. Moreover, we have shown in Lemma 2.2 that for
each absorbing state s ∈ S the probabilities of absorption in state s are the
same for the initial stochastic graph and for the reduced graph. With each
reduced graph we combined the matrix of distributions of time of transition
in “one step” between its states (cf. (2.7)) and the sequence of matrices of
moments of those distributions. Now we describe algorithms which allow
us to obtain the final reduced graph, i.e. the reduced graph with the state
space consisting only of the initial state e and the absorbing states S. Then
from its transition matrix, matrix of distributions of time of transition in one
step between its states and the moment matrices we obtain the probabilities
to absorption, distributions of time to absorption and moments of time to
absorption respectively.

3. Graph reduction. In this section we describe the algorithms of creat-
ing some special reduced graphs. The first algorithm of graph reduction we
call a loop reduction.

Definition 3.1. A pair ((W1, g1) , e) is formed from the stochastic graph
((W0, g0) , e) by the loop (a, a) reduction if:

(1) W1 =W0 and g1 (b, c) = g0 (b, c) for W1 3 b 6= a,

(2) g1 (a, b) =
g0 (a, b)

1− g0 (a, a)
for W1 3 b 6= a,

(3) g1 (a, a) = 0.

Theorem 3.1. If ((W1, g1), e) is formed from a stochastic graph ((W0, g0), e)
by a loop (a, a) reduction, then ((W1, g1) , e) is a strong reduced graph ob-
tained from ((W0, g0) , e).

Proof. It is sufficient to find a strong strategy which determines the reduced
graph ((W1, g1) , e). If a 6= a0, we show that a sequence (γ0, γ1, γ2, . . .)
defined below is a (W1, g1)-strong strategy. Let

γ0 = 0,

γ1 = 1,

γ2 (x) =

{
min {i > γ1 : xi (x) 6= a} , x ∈ {xγ1 = a} ,
γ1 (x) + 1, x ∈ {xγ1 6= a} ,

...

γn (x) =

{
min {i > γn−1 : xi (x) 6= a} , x ∈

{
xγn−1 = a

}
,

γn−1 (x) + 1, x ∈
{
xγn−1 6= a

}
, etc.

Clearly, (γ0, γ1, γ2, . . .) is a non-decreasing family and γn 7→ ∞ a.s. More-
over, γ0, γ1 are stopping times. To show by induction that (γ0, γ1, γ2, . . .)
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are stopping times, fix n ∈ N and suppose that γ0, γ1, . . . , γn−1 are stopping
times. Then for m > n we have

{γn = m} =
{
γn = m,xγn−1 = a

}
∪
{
γn = m,xγn−1 6= a

}
=

m−n+1⋃
i=1

{xm−i = a, . . . , xm−1 = a, xm 6= a, γn−1 = m− i}

∪ {γn−1 = m− 1, xm−1 6= a} ∈ Fm,

hence γn is a stopping time.
Fix b ∈ W1. Let a ∈ Wm+1

0 satisfy a0 = e, P
(
C0
a

)
> 0, am = a and

γn = m on C0
a, then we have

Pa

(
xγn+1 = b

)
=
∞∑
i=1

Pa (xm+i = b|γn+1 = m+ i)Pa (γn+1 = m+ i)

=
∞∑
i=1

g0 (a, b)

1− g0 (a, a)
g0 (a, a)

i−1 (1− g0 (a, a)) = g1 (a, b)

and for any k ≥ 1

Pa

(
γn+1 − γn = k, xγn+1 = b, xγn = a

)
= Pa (γn+1 = m+ k, xm+k = b)

= Pa (xm+1 = a, . . . , xm+k−1 = a, xm+k 6= a, xm+k = b)

= g0 (a, a)
k−1 g0 (a, b) .

Hence we can define

(3.1) N ∈ k 7→ g
(k)
1 (a, b) := g0 (a, a)

k−1 g0 (a, b) .

Suppose now, that a ∈Wm+1
0 satisfies a0 = e, P

(
C0
a

)
> 0, am = b 6= a and

γn (ω) = m on C0
a. Then we have, for any c ∈W0

Pa

(
xγn+1 = c

)
= Pa (xm+1 = c) = g0 (b, c) = g1 (b, c)

and

(3.2)

g
(k)
1 (b, c) = Pa

(
γn+1 − γn = k, xγn+1 = c, xγn = a

)
= Pa (γn+1 = m+ k, xm+k = b)

=

{
g0 (b, c) , k = 1

0, k = 2, 3, . . . ,

by the definition of γn+1. Therefore (γ0, γ1, γ2, . . .) is a (W1, g1)-strong strat-
egy. If a = a0, we define the family (γ0, γ1, γ2, . . .) as follows

γ0 = 0,

γ1 (x) = min {i > 0 : xi (x) 6= a} ,
γ2 (x) = γ1 (x) + 1,
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γ3 (x) =

{
min {i > γ2 : xi (x) 6= a} , x ∈ {xγ2 = a} ,
γ2 (x) + 1, x ∈ {xγ2 6= a} ,

...

γn (ω) =

{
min {i > γn−1 : xi (x) 6= a} , x ∈

{
xγn−1 = a

}
,

γn−1 (x) + 1, x ∈
{
xγn−1 6= a

}
, . . . .

The proof that the family (γ0, γ1, γ2, . . .) is a (W1, g1)- strong strategy is
similar to the case of a 6= a0. �

The next algorithm is called the edge reduction.

Definition 3.2. Assume that g0 (b, b) = 0. A pair ((W1, g1) , e) is obtained
from a stochastic graph ((W0, g0) , e) by the edge (a, b) reduction if:

(1) W1 =W0 and g1 (c, d) = g0 (c, d) for W1 3 c 6= a,
(2) g1 (a, c) = g0 (a, b) g0 (b, c) + g0 (a, c) for W1 3 c 6= b,
(3) g1 (a, b) = 0.

Theorem 3.2. If ((W1, g1), e) is formed from a stochastic graph ((W0, g0), e)
by the edge (a, c) reduction, then ((W1, g1) , e) is a strong reduced graph ob-
tained from ((W0, g0) , e) .

Proof. We find a strategy (γ0, γ1, γ2, . . .) which determines the strategic
subgraph ((W1, g1) , e). Let us define
γ0 = 0,
γ1 = 1,
γ2 (x) = γ1 (x) + 1 + 1A1 (x),

where A1 = {x : xγ1 (x) = a, xγ1+1 (x) = b},
. . .
γn (x) = γn−1 (x) + 1 + 1An−1 (x),

where An−1 =
{
x : xγn−1 (x) = a, xγn−1+1 (x) = b

}
, . . . .

It is clear that (γ0, γ1, γ2, . . .) is non-decreasing and γn 7→ ∞ a.s., the vari-
ables γ0, γ1 are stopping times. One can show by induction that γ2, γ3, . . .
are also stopping times. It easy to check that (γ0, γ1, γ2, . . .) is a (W1, g1)-
strong strategy which determines ((W1, g1) , e) and

(3.3)

g
(k)
1 (a, b) := Pa

(
γn+1 − γn = k, xγn+1 = b, xγn = a

)
=


g0 (a, c) , i = 1,

g0 (a, b) g0 (b, c) , i = 2,

0, i = 3, 4 . . . .

�

The last algorithm is called the state reduction. We reduce a state b ∈
W0 in the case when there exists only one edge (a, b) directed to b and
g0 (b, b) = 0.
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Definition 3.3. Assume that there exists only one edge (a, b) directed to
b and g0 (b, b) = 0. A pair ((W1, g1) , e) is formed from a stochastic graph
((W0, g0) , e) by the state b ∈W0 reduction if:

(1) W1 =W0\ {b},
(2) g1 (c, d) = g0 (c, b) g0 (b, d) + g0 (c, d), c, d ∈W1.

Theorem 3.3. If ((W1, g1), e) is formed from a stochastic graph ((W0, g0), e)
by the state b ∈ W0 reduction, then ((W1, g1) , e) is a strong reduced graph
obtained from ((W0, g0) , e).

Proof. The (W1, g1)-strong strategy which determines the strong reduced
graph ((W1, g1) , e) is the same as in the case of the edge reduction. �

Notice that each stochastic graph ((W0, g0) , e) can be reduced according
to the above algorithms to the strong reduced graph ((Wr, gr) , e) consisting
of an initial state e and all the absorbing states S, Wr = S ∪ {e0}. By
Lemma 2.2 the probabilities of absorption in a reduced graph are equal to
the probabilities of absorption in its initial graph, thus we have

(3.4) p (s) = gr (a0, s) , s ∈ S.

4. Distribution of time to absorption. Let X
′
0 = {x : ∃n>0 xn (x) = s}

with probability being conditional probability derived from P (cf. (1.3))
be a probability space. Recall that, a random variable Ts : X

′
0 7→ N is

called time to absorption in state s ∈ S if Ts (x) = inf {n ≥ 0 : xn (x) = s},
x ∈ X

′
0.

Let ((W1, g1) , e) be a strong reduced graph obtained from ((W0, g0) , e) by
a (W1, g1)-strong strategy τ0, τ1, τ2, . . . on X0 and ((W2, g2) , e) be a strong
reduced graph obtained from ((W1, g1) , e) by (W2, g2)-strong strategy η0,
η1, η2, . . . on X1 – one of the described in Section 3 (see Definitions 3.1,
3.2, 3.3). For any n ≥ m ≥ 0 and for any b ∈ Wm+1

1 such that b0 = e,
P 1
(
C1
b

)
> 0, bm = c1 ∈W2 and ηn = m on C1

b denote by

p
(k)
2 (c1, c2) = P 1

b

(
ηn+1 − ηn = k|yηn = c1, yηn+1 = c2

)
=

{
g
(·)
2 (c1,c2)
g2(c1,c2)

if g2 (c1, c2) > 0,

0 if g2 (c1, c2) = 0

for k ≥ 1, the probability distribution of time of transition in “one step” be-
tween the states c1 and c2 in the strong reduced graph ((W2, g2) , e) obtained
from (W1, g1), for any c2 ∈W1.

By Theorem 2.1 we know that ((W2, g2) , e) is also a strong reduced graph
obtained from ((W, g0) , e) by (W2, g2)- strategy τη̃0 , τη̃1 , τη̃2 , . . . on X0. Hence
for any m ≥ n ∈ N and for a ∈ Wm+1

0 such that a0 = e, P
(
C0
a

)
> 0,
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am = c1 ∈W2 and τη̃n = m on C0
a we can define N 3 k 7→ g̃

(·)
2 (c1, c2) by

(4.1) g̃
(·)
2 (c1, c2) = Pa

(
τη̃n+1 − τη̃n = k, xτη̃n = c1, xτη̃n+1

= c2

)
.

Now, we can also denote by

p̃
(k)
2 (c1, c2) =

{
g̃
(·)
2 (c1,c2)
g2(c1,c2)

if g2 (c1, c2) > 0,

0 if g2 (c1, c2) = 0

for k ≥ 1, the probability distribution of time of transition in “one step”
between the states c1 and c2 in the strong reduced graph ((W2, g2) , e) ob-
tained from the stochastic graph ((W0, g0) , e). Denote by m̃n

2 (c1, c2) nth
moment of the distribution p̃

(·)
2 (c1, c2).

Next we present formulas which allow us to compute p̃(·)2 (c1, c2) for any
c1, c2 ∈W2.

4.1. Loop reduction. Let ((W2, g2) , e) be formed from ((W1, g1) , e) by
loop (a, a) reduction, a ∈W1. From (2.16)–(2.17) and (3.1)–(3.2) we obtain
that

(4.2) p̃
(k)
2 (a, b) =

1

g2(a, b)

∑
1≤i≤k

p
(k)
1 (a, a . . . a, b)

i−1 times
g1(a, a)

i−1g1(a, b),

for k = 1, 2, . . .. Hence, we get

(4.3)
m̃n

2 (a, b) =
g1 (a, b)

g2 (a, b)

n∑
p=0

(
n

p

)
mn−p

1 (a, a)mp
1 (a, b)

∞∑
j=0

jn−pg1 (a, a)
j ,

m̃n
2 (a, a) = 0, m̃n

2 (b, c) = m̃n
1 (b, c) ,

where b ∈W2, b ∈W2\ {a}, n ∈ N.

4.2. Edge reduction. Let ((W2, g2) , e) be formed from ((W1, g1) , e) by
edge (a, b) reduction a, b ∈W1. From (2.16)–(2.17) and (3.3) we obtain:

(4.4) p̃
(k)
2 (a, c) =

1

g2(a, c)

[
p
(k)
1 (a, c) g1(a, c) + p

(k)
1 (a, b, c) g1(a, b)g1(b, c)

]
,

for k = 1, 2, . . .. Hence, we get

(4.5)

m̃n
2 (a, c) =

g1 (a, c)

g2 (a, c)
mn

1 (a, c)

+
g1 (a, b) g1 (b, c)

g2 (a, c)

n∑
p=0

(
n

p

)
mn−p

1 (a, b)mp
p (b, c) ,

m̃n
2 (a, b) = 0, m̃n

2 (c, d) = m̃n
1 (c, d) ,

where c ∈W2\ {a}, d ∈W2, n ∈ N.
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4.3. State reduction. Let ((W2, g2) , e) be formed from ((W1, g1) , e) by
state b ∈ W1 reduction. Formulas for p̃(·)2 (·, ·) and m̃n

2 (·, ·) are the same as
in the case of edge reduction.

Every stochastic graph ((W0, g0) , e) can be reduced according to the al-
gorithms described in Section 3 and formulas (4.2)–(4.5) to a stochastic
graph ((Wr, gr) , e), Wr = {e} ∪ S determine by the strategy (θ0, θ1, . . .)
with matrix of distributions of time of transition in “one step” between
its states Pr =

[
p
(·)
r (a, b)

]
a,b∈Wr

and the matrix of nth moments Mn
r =

[mn
r (a, b)]a,b∈Wr

. Therefore Ts
d
= p

(·)
r (e, s) and E (Ts)

n = mn
r (e, s) , for all

s ∈ S and all n ∈ N.

4.4. An example. Now we apply the described algorithms to solve a clas-
sical problem: the bold gamble.

Example 4.1. We have 2$ and you need 5$, we can reach our goal by a fair
gamble. We decide on the bold strategy: at each time we stake so much of
our current fortune that we come as close to our goal as possible, if we win.
The bold gamble can be translated into the following stochastic graph:

W0 = {0, 1, 2, 3, 4, 5} , S = {0, 5} , a0 = 2, g0 =


1 0 0 0 0 0
0 1 0 0 0 0
1
2 0 0 1

2 0 0
1
2 0 0 0 0 1

2
0 1

2
1
2 0 0 0

0 1
2 0 0 1

2 0

 ,

where in first, second, third, fourth, fifth, sixth row of g0 there are prob-
abilities of transition from state 0, 5, 1, 2, 3, 4 respectively. We com-
pute probabilities of absorption and first two moments of time to absorp-
tion. Denote by M1

0 , M2
0 the matrices of first and second moments i.e.

M1
0 =M2

0 =
[
1{(i,j):g0(i,j)>0} (i, j)

]
. Notice that there is only one edge (2, 4)

directed to the state 4, so we can reduce it. After that we obtain

g1 =


1 0 0 0 0
0 1 0 0 0
1
2 0 0 1

2 0
1
2

1
4 0 0 1

4
0 1

2
1
2 0 0

 , M̃1
1 =


1 0 0 0 0
0 1 0 0 0
1 0 0 1 0
1 2 0 0 2
0 1 1 0 0

 ,

M̃2
1 =


1 0 0 0 0
0 1 0 0 0
1 0 0 1 0
1 4 0 0 4
0 1 1 0 0

 .
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Next we reduce the state 3

g2 =


1 0 0 0
0 1 0 0
1
2 0 0 1

2
1
2

3
8

1
8 0

 , M̃1
2 =


1 0 0 0
0 1 0 0
1 0 0 1
1 7

3 3 0

 , M̃2
2 =


1 0 0 0
0 1 0 0
1 0 0 1
1 17

3 9 0


and the edge (1, 2)

g3 =


1 0 0 0
0 1 0 0
3
4

3
16

1
16 0

1
2

3
8

1
8 0

, M̃1
3 =


1 0 0 0
0 1 0 0
4
3

10
3 4 0

1 7
3 3 0

, M̃2
3 =


1 0 0 0
0 1 0 0
2 34

3 16 0
1 17

3 9 0

.
After these three reductions we obtain a loop (1, 1). We reduce the loop
(1, 1), thus

g4 =


1 0 0 0
0 1 0 0
4
5

1
5 0 0

1
2

3
8

1
8 0

 , M̃1
4 =


1 0 0 0
0 1 0 0
8
5

18
5 0 0

1 7
3 3 0

 ,

M̃2
4 =


1 0 0 0
0 1 0 0

3.92 14.32 0 0
1 17

3 9 0

 .
Finally we reduce the state 1.

gr =


1 0 − 0
0 1 − 0
− − − −
3
5

2
5 − 0

 , M1
r =


1 0 − 0
0 1 − 0
− − − −
8
5

13
5 − 0

 ,

M2
r =


1 0 − 0
0 1 − 0
− − − −

1376
300 8.12 − 0

 .
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