
doi: 10.2478/v10062-009-0007-9

ANNALES
U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A

L U B L I N – P O L O N I A

VOL. LXIII, 2009 SECTIO A 63–81

MARCIN DUDZIŃSKI

The almost sure central limit theorems
for certain order statistics

of some stationary Gaussian sequences

Abstract. Suppose that X1, X2, . . . is some stationary zero mean Gaussian
sequence with unit variance. Let {kn} be a certain nondecreasing sequence
of positive integers, M (kn)

n denote the knth largest maximum of X1, . . . , Xn.
We aim at proving the almost sure central limit theorems for the suitably
normalized sequence

{
M

(kn)
n

}
under certain additional assumptions on {kn}

and the covariance function r(t) := Cov (X1, X1+t).

1. Introduction. The almost sure central limit theorem (ASCLT) has be-
come an intensively studied subject in recent time. In the research concern-
ing the ASCLT the following property is investigated. Let X1, X2, . . . be
some r.v.’s, f1, f2, . . . , fk, . . . denote some real-valued measurable functions,
defined on R,R2, . . . ,Rk, . . . , respectively. We seek conditions under which,
for some nondegenerate d.f. G,

lim
N→∞

1

DN

N∑
n=1

dnI(fn(X1, . . . , Xn) ≤ x) = G(x) a.s.
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for all x ∈ CG, where: {dn} is some sequence of weights, DN =
∑N

n=1 dn,
I stands for the indicator function, and CG denotes the set of continuity
points of G.

In our investigations, we will restrict ourselves to the case, when the
relation above holds with: dn = 1/n, DN ∼ logN , fn (X1, . . . , Xn) =

an

(
M

(kn)
n − bn

)
, where: {kn} is a certain nondecreasing sequence of posi-

tive integers, M (kn)
n denotes the knth largest maximum of X1, . . . , Xn, and

an > 0, bn are certain normalizing constants.
Let Φ be the standard normal d.f. The purpose of this paper is to prove

that if X1, X2, . . . is a standardized stationary Gaussian sequence, then,
under some assumptions on the numerical sequences {kn}, {un} and the
covariance function r(t) := Cov (X1, X1+t), we have for some τ , 0 < τ <∞,

(1) lim
N→∞

1

logN

N∑
n=1

1

n
I
(
M (kn)
n ≤ un

)
= Φ (τ) a.s.

As a direct consequence, we will also show that if:

(2)
an =

(
2 log (n/kn)

kn

)1/2
,

bn = (2 log (n/kn))1/2 − log log (n/kn) + log 4π

2 (2 log (n/kn))1/2
,

then the following strong convergence occurs for all x ∈ R

(3) lim
N→∞

1

logN

N∑
n=1

1

n
I
(
an

(
M (kn)
n − bn

)
≤ x

)
= Φ (x) a.s.

In the case, when kn ≡ k, where k is a fixed positive integer, we will show
that, under certain conditions on {un} and r (t),

(4) lim
N→∞

1

logN

N∑
n=1

1

n
I
(
M (k)
n ≤ un

)
= e−τ

k−1∑
s=0

τ s

s!
a.s.

for some τ, 0 < τ <∞.
As a direct consequence, we will also show that if:

(5) an = (2 log n)1/2 , bn = (2 log n)1/2 − log logn+ log 4π

2 (2 log n)1/2
,

then the following strong convergence occurs for all x ∈ R

(6) lim
N→∞

1

logN

N∑
n=1

1

n
I
(
an

(
M (k)
n − bn

)
≤ x

)
= exp

(
−e−x

) k−1∑
s=0

(e−x)
s

s!
a.s.

We should mention here that, in the case of i.i.d. r.v.’s, the ASCLT for the
order statistics M (kn)

n has been proved in Stadtmueller [4], under some extra
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assumptions on {kn}. It is also worthwhile to mention that the ASCLT for
the ordinary maxima Mn = M

(1)
n := max (X1, . . . , Xn) of some dependent

stationary Gaussian sequences has been proved in Csaki and Gonchigdanzan
[1] and Dudziński [2].

The following notations will be used throughout the paper:
M

(kn)
n – the knth largest maximum of X1, . . . , Xn; M (kn)

m,n – the knth largest
maximum among Xm+1, . . . , Xn; r (t) := Cov (X1, X1+t); Φ – the standard
normal d.f.; #A – the cardinality of the set A; |x| – an absolute value of x;
[x] – the greatest integer less than or equal to x. Furthermore, f (n)� g (n)
and f (n) ∼ g (n) will stand for f (n) = O (g (n)) and f (n) /g (n) → 1, as
n→∞, respectively.

2. Main results. Our main results are the ASCLTs for certain order sta-
tistics of some stationary Gaussian sequences. The first one can be formu-
lated as follows.

Theorem 1. Let X1, X2, . . . be a stationary zero mean Gaussian sequence
with unit variance and {kn} denote a nondecreasing sequence of positive
integers, which satisfies:

(7) kn →∞ as n→∞,

(8) log kn � (log n)1−α for some α > 0,

there exists a number β > 1, such that the sequence
{

(log n)/kβn
}

(9)

is nondecreasing for all sufficiently large n.

Assume in addition that the covariance function r(t) := Cov (X1, X1+t)
fulfils the following condition

(10)
∞∑

t=
[
n1/k

β
n

] |r (t)| � 1

nkn−1−1/k
β−1
n +1/kβn

for some β satisfying (9).

Then:
(i) if the numerical sequence {un} satisfies:

(11) n (1− Φ (un)) Φ (un)→∞ as n→∞,

(12)
kn − n (1− Φ (un))

{n (1− Φ (un)) Φ (un)}1/2
→ τ for some τ, 0 < τ <∞, as n→∞,

then relation (1) holds,
(ii) if the sequences {an}, {bn} are such as in (2), then relation (3) holds

for all x ∈ R.

Our next main result is the ASCLT for the kth largest maxima. Here it is.
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Theorem 2. Let X1, X2, . . . be a stationary zero mean Gaussian sequence
with unit variance and k denote a fixed positive integer. Assume more-
over that the covariance function r(t) := Cov (X1, X1+t) fulfils the following
condition

(13)
∞∑

t=
[
n1/kβ

] |r (t)| � 1

nk−1−1/kβ−1+1/kβ
for some β > 1.

Then:
(i) if the numerical sequence {un} satisfies

(14) n (1− Φ (un))→ τ for some τ, 0 < τ <∞, as n→∞,

then relation (4) holds,
(ii) if the sequences {an}, {bn} are such as in (5), then relation (6) holds

for all x ∈ R.

3. Auxiliary results. In this section, we state and prove three lemmas,
which will be used in the proofs of Theorems 1, 2.

Lemma 1. Under the assumptions of Theorem 1, we have that if m, n
satisfy m ≤ n/kn − 1, then

(15) E
∣∣∣I (M (kn)

n ≤ un
)
− I

(
M (kn)
m,n ≤ un

)∣∣∣� 1

nγ
+

knm

n− kn
for some γ > 0.

Proof. We have

(16)
E
∣∣∣I (M (kn)

n ≤ un
)
− I

(
M (kn)
m,n ≤ un

)∣∣∣
=
∣∣∣P (M (kn)

n ≤ un
)
− P

(
M (kn)
m,n ≤ un

)∣∣∣ .
It is clear that P

(
M

(kn)
n ≤ un

)
= P (at most kn−1 of X1, . . . , Xn exceed un).

Similarly, P
(
M

(kn)
m,n ≤ un

)
= P (at most kn−1 of Xm+1, . . . , Xn exceed un).

For the given m, n, we put:

(17)
∑

(A1,A2)

:=
∑

(A1,A2):
A1∪A2={1,...,n}, #A1≤kn−1, A2={1,...,n}�A1

,

(18)
∑

(B1,B2)

:=
∑

(B1,B2):
B1∪B2={m+1,...,n}, #B1≤kn−1, B2={m+1,...,n}�B1

.
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Hence, by applying (16) and the notations in (17), (18),

E
∣∣∣I (M (kn)

n ≤ un
)
− I

(
M (kn)
m,n ≤ un

)∣∣∣
=

∣∣∣∣∣∣
∑

(A1,A2)

P

 ⋂
ap∈A1

{
Xap > un

}
∩
⋂

as∈A2

{Xas ≤ un}


−

∑
(B1,B2)

P

 ⋂
bp∈B1

{
Xbp > un

}
∩
⋂

bs∈B2

{Xbs ≤ un}

∣∣∣∣∣∣ .
Thus, we can write that

(19)

E
∣∣∣I (M (kn)

n ≤ un
)
− I

(
M (kn)
m,n ≤ un

)∣∣∣
≤

∑
(A1,A2)

∣∣∣∣∣∣P
 ⋂
ap∈A1

{
Xap > un

}
∩
⋂

as∈A2

{Xas ≤ un}


−

∏
ap∈A1

P
(
Xap > un

) ∏
as∈A2

P (Xas ≤ un)

∣∣∣∣∣∣
+

∑
(B1,B2)

∣∣∣∣∣∣P
 ⋂
bp∈B1

{
Xbp > un

}
∩
⋂

bs∈B2

{Xbs ≤ un}


−
∏
bp∈B1

P
(
Xbp > un

) ∏
bs∈B2

P (Xbs ≤ un)

∣∣∣∣∣∣
+

 ∑
(B1,B2)

∏
bp∈B1

P
(
Xbp > un

) ∏
bs∈B2

P (Xbs ≤ un)

−
∑

(A1,A2)

∏
ap∈A1

P
(
Xap > un

) ∏
as∈A2

P (Xas ≤ un)


=: D1 +D2 +D3.

By (10) and the fact that kn − 1 − 1/kβ−1n + 1/kβn ≥ 0 for any n ≥ 1, we
obtain

(20)
∞∑
t=1

|r(t)| <∞.
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It follows from (20) and (7) that there exist positive numbers δ, γ, n0, such
that:

(21) sup
t≥1
|r (t)| = δ < 1,

(22) 1/kβ−1n − 1/kβn < 2/ (1 + δ)− 1− 2γ

for all n > n0, if β fulfils (9), (10). Let c (n) denote the largest integer, such
that

(23) c (n)
[
n1/k

β
n

]
+ 1 < n.

Thus, we can divide the sequence X1, . . . , Xn into the following c (n) + 1
blocks: (

X1, . . . , X[
n1/k

β
n

]) ,(X[
n1/k

β
n

]
+1
, . . . , X

2
[
n1/k

β
n

]) , . . . ,(
X
c(n)

[
n1/k

β
n

]
+1
, . . . , Xn

)
.

Since X1, . . . , Xn is a standard normal sequence and (21), (23) hold,
then, by applying Theorem 4.2.1 in Leadbetter et al. [3] (the so-called Nor-
mal Comparison Lemma), and by using the previously described division of
{X1, . . . , Xn}, as well as the definitions of D1 in (19) and

∑
(A1,A2)

in (17),
we have

D1 �(24)

�

C1 (n)

c(n)−2∑
d=0

(d+1)

[
n1/k

β
n

]
∑

i=d
[
n1/k

β
n

]
+1

(d+2)

[
n1/k

β
n

]
∑
j=i+1

|r (j − i)| exp

(
− u2n

1 + δ

)

+ C1 (n)

c(n)

[
n1/k

β
n

]
∑

i=(c(n)−1)
[
n1/k

β
n

]
+1

n∑
j=i+1

|r (j − i)| exp

(
− u2n

1 + δ

)

+ C1 (n)
n−1∑

i=c(n)
[
n1/k

β
n

]
+1

n∑
j=i+1

|r (j − i)| exp

(
− u2n

1 + δ

)
+

C2 (n)

c(n)−2∑
d=0

(d+1)

[
n1/k

β
n

]
∑

i=d
[
n1/k

β
n

]
+1

n∑
j=(d+2)

[
n1/k

β
n

]
+1

|r (j − i)| exp

(
− u2n

1 + δ

) ,
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where C1 (n), C2 (n) satisfy:

C1 (n) =

kn−1∑
l=0

([
n1/k

β
n

]
l

)
+

kn−1∑
l=0

([
n1/k

β
n

]
l

)( [
n1/k

β
n

]
kn − 1− l

)
,(25)

C2 (n) =

kn−1∑
l=0

([
n1/k

β
n

]
l

)(
n− 2

[
n1/k

β
n

]
kn − 1− l

)
.(26)

Due to the derivation in (24), we have

(27)

D1 � (c (n) + 1)C1 (n)
[
n1/k

β
n

] 2[n1/k
β
n

]
−1∑

t=1

|r(t)| exp

(
− u2n

1 + δ

)

+ (c (n)− 1)C2 (n)
[
n1/k

β
n

] n−1∑
t=
[
n1/k

β
n

]
+1

|r(t)| exp

(
− u2n

1 + δ

)
.

Notice that, by the definition of c (n) in (23),

(28) (c (n) + 1)
[
n1/k

β
n

]
� n.

Consequently, due to (27), (28),

(29)

D1 � nC1 (n)

2

[
n1/k

β
n

]
−1∑

t=1

|r(t)| exp

(
− u2n

1 + δ

)

+ nC2 (n)
n−1∑

t=
[
n1/k

β
n

]
+1

|r(t)| exp

(
− u2n

1 + δ

)
.

In addition, it follows from (25), (26) that:

C1 (n)� kn

(
n1/k

β
n

)kn−1
= knn

1/kβ−1
n −1/kβn ,(30)

C2 (n)� knn
kn−1.(31)

Relations (30), (31) together with derivation (29) imply

(32)

D1 � knn
1+1/kβ−1

n −1/kβn

2

[
n1/k

β
n

]
−1∑

t=1

|r(t)| exp

(
− u2n

1 + δ

)

+ knn
kn

n−1∑
t=
[
n1/k

β
n

]
+1

|r(t)| exp

(
− u2n

1 + δ

)
.
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Recall that, by (10) and (20) (see the reasoning above (20)),

(33)
n−1∑

t=
[
n1/k

β
n

]
+1

|r(t)| � 1

nkn−1−1/k
β−1
n +1/kβn

and
∞∑
t=1

|r(t)| <∞.

The relations in (32), (33) yield

(34) D1 � knn
1+1/kβ−1

n −1/kβn exp

(
− u2n

1 + δ

)
.

Since

1− Φ (un) ∼

1√
2π

exp

(
−u

2
n

2

)
un

and, by (11), (12), kn ∼ n (1− Φ (un)), we get un ∼ (2 log (n/kn))1/2 and

exp

(
−u

2
n

2

)
∼
√

2π
kn
n

(2 log (n/kn))1/2 .

Hence

(35) exp

(
− u2n

1 + δ

)
� (kn)2/(1+δ)

n2/(1+δ)
(log (n/kn))1/(1+δ) .

From (34), (35), we get

D1 �
(kn)1+2/(1+δ) (log (n/kn))1/(1+δ)

n2/(1+δ)−1−1/k
β−1
n +1/kβn

.

Furthermore, notice that log (n/kn) ≤ log n and, by (8), kn � nε for any
ε > 0. Therefore

(36) D1 �
(nε)1+2/(1+δ) (log n)1/(1+δ)

n2/(1+δ)−1−1/k
β−1
n +1/kβn

for any ε > 0.

Since in addition, (22) holds, we have 2/ (1 + δ)− 1− 1/kβ−1n + 1/kβn > 2γ
for any n > n0 and some γ > 0. As ε in (36) may be arbitrary positive
number, we can choose ε satisfying the relation ε (1 + 2/ (1 + δ)) < γ. Then

(nε)1+2/(1+δ) (log n)1/(1+δ) � nγ ,

and we can write that

(37) D1 �
nγ

n2γ
= 1/nγ for some γ > 0.

In order to estimate the component D2 in (19), it is sufficient to apply
identical methods to those used in the estimation of D1. Therefore, we
obtain that

(38) D2 � 1/nγ for some γ > 0.
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Thus, it remains to bound the term D3 in (19). Let X̃1, . . . , X̃n be an
i.i.d. standard normal sequence. We denote by M̃

(kn)
n the knth largest

maximum of X̃1, . . . , X̃n and by M̃
(kn)
m,n the knth largest maximum among

X̃m+1, . . . , X̃n. By the notations in (17), (18) and the definition of the
component D3 in (19)

(39) D3 = P
(
M̃ (kn)
m,n ≤ un

)
− P

(
M̃ (kn)
n ≤ un

)
≤ P

(
M̃ (kn)
n 6= M̃ (kn)

m,n

)
.

As m ≤ n/kn − 1 and kn � nε for any ε > 0, it follows from Lemma 1 in
Stadtmueller [4] that

P
(
M̃ (kn)
n 6= M̃ (kn)

m,n

)
� knm/ (n− kn) .

Thus, due to (39),

(40) D3 � knm/ (n− kn) .

Relations (19), (37), (38) and (40) imply the desired result in (15). �

Lemma 2. Under the assumptions of Theorem 1, we have that if m, n
satisfy m ≤ n/kn − 1, then

(41)
∣∣∣Cov (I (M (km)

m ≤ um
)
, I
(
M (kn)
m,n ≤ un

))∣∣∣� 1

nγ

for some γ > 0.

Proof. Let X1, X2, . . . be a standardized stationary Gaussian sequence,
{kn}, {r (t)}, {un} satisfy (7)–(12), respectively, and m ≤ n/kn−1. Clearly∣∣∣Cov (I (M (km)

m ≤ um
)
, I
(
M (kn)
m,n ≤ un

))∣∣∣(42)

=
∣∣∣P(M (km)

m ≤ um,M (kn)
m,n ≤ un

)
− P

(
M (km)
m ≤ um

)
P
(
M (kn)
m,n ≤ un

)∣∣∣ .
For the given m, n, we set

(43)
∑

(A1,A2,B1,B2)

:=
∑

(A1,A2,B1,B2):
A1∪A2={1,...,m}, #A1≤km−1, A2={1,...,m}\A1,

B1∪B2={m+1,...,n}, #B1≤kn−1, B2={m+1,...,n}\B1

.

Since

P
(
M (km)
m ≤ um

)
= P (at most km − 1 of X1, . . . , Xm exceed um)

and

P
(
M (kn)
m,n ≤ un

)
= P (at most kn − 1 of Xm+1, . . . , Xn exceed un) ,
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then, by relation (42) and the notation in (43), we can write that

(44)

∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣
≤

∑
(A1,A2,B1,B2)

F (A1, A2, B1, B2) ,

where

F (A1, A2, B1, B2)

:=

∣∣∣∣∣P
( ⋂
ap∈A1

{Xap>um}∩
⋂

as∈A2

{Xas≤um}∩
⋂

bp∈B1

{Xbp>un}∩
⋂

bs∈B2

{Xbs≤un}

)

− P

( ⋂
ap∈A1

{Xap>um}∩
⋂

as∈A2

{Xas≤um}

)
P

( ⋂
bp∈B1

{Xbp>un}∩
⋂

bs∈B2

{Xbs≤un}

)∣∣∣∣∣.
By (7) and (10) (see the reasoning above (20)), |r(t)| → 0 as t→∞. Hence,
there exist positive numbers δ, γ, n1, such that:

(45) sup
t≥1
|r (t)| = δ < 1,

(46) 1/kβ−1n − 1/kβn < 1/ (1 + δ)− 1/2− γ

for all n > n1, if β fulfils (9), (10).
Let c (m) denote the largest integer, such that

c (m)
[
m1/kβm

]
+ 1 < m.

Thus, we can divide the sequenceX1, . . . , Xm, Xm+1, . . . , Xn into the blocks:(
X1, . . . ,X[

m1/k
β
m

]) , (X[
m1/k

β
m

]
+1
, . . . ,X

2
[
m1/k

β
m

]) , . . . ,(
X
c(m)

[
m1/k

β
m

]
+1
, . . . ,Xm

)
,

(
Xm+1, . . . ,X

m+
[
n1/k

β
n

]) ,(
X
m+

[
n1/k

β
n

]
+1
, . . . ,Xn

)
.

By using such a division, as well as Theorem 4.2.1 in Leadbetter et al. [3],
the relation in (44) and the definition of

∑
(A1,A2,B1,B2)

in (43), we obtain
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∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣(47)

�

C1 (m,n)

c(m)−1∑
d=0

(d+1)

[
m1/k

β
m

]
∑

i=d
[
m1/k

β
m

]
+1

m+

[
n1/k

β
n

]
∑

j=m+1

|r (j − i)| exp

(
−u

2
m + u2n

2 (1 + δ)

)

+ C1 (m,n)
m∑

i=c(m)
[
m1/k

β
m

]
+1

m+

[
n1/k

β
n

]
∑

j=m+1

|r (j − i)| exp

(
−u

2
m + u2n

2 (1 + δ)

)
+

C2 (m,n)

c(m)−1∑
d=0

(d+1)

[
m1/k

β
m

]
∑

i=d
[
m1/k

β
m

]
+1

n∑
j=m+

[
n1/k

β
n

]
+1

|r (j − i)| exp

(
−u

2
m + u2n

2 (1 + δ)

)

+ C2 (m,n)

m∑
i=c(m)

[
m1/k

β
m

]
+1

n∑
j=m+

[
n1/k

β
n

]
+1

|r (j − i)| exp

(
−u

2
m + u2n

2 (1 + δ)

) ,

where C1 (m,n), C2 (m,n) satisfy:

C1 (m,n) =

km−1∑
l1=0

kn−1∑
l2=0

([
m1/kβm

]
l1

)([
n1/k

β
n

]
l2

)
,(48)

C2 (m,n) =

km−1∑
l1=0

kn−1∑
l2=0

([
m1/kβm

]
l1

)(
n−m−

[
n1/k

β
n

]
l2

)
.(49)

It follows from the derivation in (47) that

(50)

∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣
� (c (m) + 1)C1 (m,n)

[
m1/kβm

]m+

[
n1/k

β
n

]
−1∑

t=1

|r(t)| exp

(
−u

2
m + u2n

2 (1 + δ)

)

+ (c (m) + 1)C2 (m,n)
[
m1/kβm

] n−1∑
t=
[
n1/k

β
n

]
+1

|r(t)| exp

(
−u

2
m + u2n

2 (1 + δ)

)
.
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In addition, by the definition of c (m) (see the relation below (46)),

(51) (c (m) + 1)
[
m1/kβm

]
� m.

Relations (50), (51) yield

(52)

∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣
� mC1 (m,n)

m+

[
n1/k

β
n

]
−1∑

t=1

|r(t)| exp

(
−u

2
m + u2n

2 (1 + δ)

)

+mC2 (m,n)

n−1∑
t=
[
n1/k

β
n

]
+1

|r(t)| exp

(
−u

2
m + u2n

2 (1 + δ)

)
.

Moreover, observe that, due to (48), (49):

(53)
C1 (m,n)� kmkn

(
m1/kβm

)km−1 (
n1/k

β
n

)kn−1
= kmknm

1/kβ−1
m −1/kβmn1/k

β−1
n −1/kβn ,

(54) C2 (m,n)� kmkn

(
m1/kβm

)km−1
nkn−1 = kmknm

1/kβ−1
m −1/kβmnkn−1.

Relations (53), (54) together with derivation (52) imply∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣(55)

� kmknm
1+1/kβ−1

m −1/kβmn1/k
β−1
n −1/kβn

m+

[
n1/k

β
n

]
−1∑

t=1

|r(t)| exp

(
−u

2
m + u2n

2 (1 + δ)

)

+ kmknm
1+1/kβ−1

m −1/kβmnkn−1
n−1∑

t=
[
n1/k

β
n

]
+1

|r(t)| exp

(
−u

2
m + u2n

2 (1 + δ)

)
.

By assumption (10) and relation (20) (see the reasoning above (20))
n−1∑

t=
[
n1/k

β
n

]
+1

|r(t)| � 1

nkn−1−1/k
β−1
n +1/kβn

and
∞∑
t=1

|r(t)| <∞.

This and (55) yield

(56)

∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣
� kmknm

1+1/kβ−1
m −1/kβmn1/k

β−1
n −1/kβn exp

(
−u

2
m + u2n

2 (1 + δ)

)
.
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Moreover, it follows from (35) that

(57)
exp

(
−u

2
m + u2n

2 (1 + δ)

)
� (km)1/(1+δ)

m1/(1+δ)
(log (m/km))1/2(1+δ)

(kn)1/(1+δ)

n1/(1+δ)
(log (n/kn))1/2(1+δ) .

As in addition, the sequence {kn} is nondecreasing, we have km ≤ kn. This,
relation (57) and the fact that

(log (m/km))1/2(1+δ) (log (n/kn))1/2(1+δ) ≤ (logm)1/2(1+δ) (log n)1/2(1+δ)

≤ (log n)1/(1+δ)

yield

(58) exp

(
−u

2
m + u2n

2 (1 + δ)

)
� (kn)2/(1+δ) (log n)1/(1+δ)

m1/(1+δ)n1/(1+δ)
.

Relations (56), (58) imply

(59)

∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣
� m1+1/kβ−1

m −1/kβm−1/(1+δ)

n1/(1+δ)−1/k
β−1
n +1/kβn

(kn)2+2/(1+δ) (log n)1/(1+δ)

� (kn)2+2/(1+δ) (log n)1/(1+δ)

n2/(1+δ)−1−1/k
β−1
n +1/kβn−1/kβ−1

m +1/kβm

=
(kn)2+2/(1+δ) (log n)1/(1+δ)

n1/(1+δ)−1/2−1/k
β−1
n +1/kβn+1/(1+δ)−1/2−1/kβ−1

m +1/kβm
.

Notice that, by (46), we obtain

(60) 1/ (1 + δ)−1/2−1/kβ−1n +1/kβn+1/ (1 + δ)−1/2−1/kβ−1m +1/kβm > 2γ

for all m, n > n1 and some γ > 0.
Due to (59) and (60) and the fact that, by assumption (8), kn � nε for

any ε > 0, we have

(61)

∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣
� (kn)2+2/(1+δ) (log n)1/(1+δ)

n2γ

� (nε)2+2/(1+δ) (log n)1/(1+δ)

n2γ

for some γ > 0 and any ε > 0. As ε in (61) may be arbitrary positive
number, we can choose ε satisfying the relation ε (2 + 2/ (1 + δ)) < γ. Then
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(nε)2+2/(1+δ) (log n)1/(1+δ) � nγ and∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
m,n ≤ un

))∣∣∣� nγ

n2γ
=

1

nγ

for some γ > 0, which is the result in (41), we wished to prove. �

The following property will be also needed in our further considerations.

Lemma 3. Under the assumptions of Theorem 1, we have

(62) lim
n→∞

P
(
M (kn)
n ≤ un

)
= Φ (τ) ,

where τ satisfies (12).

Proof. The relation in (62) follows immediately from Theorem 4.2.1 (the
Normal Comparison Lemma) and Theorem 2.5.2 in Leadbetter et al. [3]. �

4. Proofs of main results. In this section, we give the proofs of Theo-
rems 1, 2. As we mentioned earlier, the results stated in Lemmas 1–3 are
important ingredients of these proofs.

Proof of Theorem 1 (i). First, we will show that

(63) lim
N→∞

1

logN

N∑
n=1

1

n

{
I
(
M (kn)
n ≤ un

)
− P

(
M (kn)
n ≤ un

)}
= 0 a.s.

By Lemma 3.1 in Csaki and Gonchigdanzan [1], in order to prove (63), it is
sufficient to show that the following property occurs for some ε > 0

(64) V ar

(
N∑
n=1

1

n
I
(
M (kn)
n ≤ un

))
� (logN)2 (log logN)−(1+ε) .

We have

(65)

V ar

(
N∑
n=1

1

n
I
(
M (kn)
n ≤ un

))
≤

N∑
n=1

1

n2
V ar

(
I
(
M (kn)
n ≤ un

))
+ 2

∑
1≤m<n≤N

1

mn

∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
n ≤ un

))∣∣∣
=:
∑

1
+
∑

2
.

It is clear that

(66)
∑

1
≤
∞∑
n=1

1

n2
<∞.
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Our purpose now is to estimate
∑

2 in (65). Observe that∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
n ≤ un

))∣∣∣
� E

∣∣∣I (M (kn)
n ≤ un

)
− I

(
M (kn)
m,n ≤ un

)∣∣∣
+
∣∣∣Cov (I (M (km)

m ≤ um
)
, I
(
M (kn)
m,n ≤ un

))∣∣∣ .
Thus, by (67) and Lemmas 1, 2, we have that if m, n satisfy m ≤ n

kn
− 1,

then ∣∣∣Cov (I (M (km)
m ≤ um

)
, I
(
M (kn)
n ≤ un

))∣∣∣� 1

nγ
+

knm

n− kn
for some γ > 0. Consequently

(67)

∑
2
�

∑
1≤m<n≤N,
m≤n/kn−1

1

mn

1

nγ
+

∑
1≤m<n≤N,
m≤n/kn−1

1

mn

knm

n− kn
+

∑
1≤m<n≤N,
m>n/kn−1

1

mn

=: G1 +G2 +G3.

Notice that

(68) G1 ≤
∑

1≤m<n≤N

1

mn

1

nγ
=

N−1∑
m=1

1

m

N∑
n=m+1

1

n1+γ
≤ 1

γ

N−1∑
m=1

1

m1+γ
<∞.

In order to estimate G2 in (67), observe that

(69)

G2 �
∑

1≤n≤N

∑
1≤m≤n/kn−1

kn
n (n− kn)

�
∑

1≤n≤N
(n/kn − 1)

kn
n (n− kn)

�
N∑
n=1

1

n
� logN.

Thus, it remains to estimate component G3. From its definition in (67), we
get

G3 ≤
∑

1≤n≤N

1

n

n−1∑
m=[n/kn]

1

m
�

∑
1≤n≤N

1

n
log

n

[n/kn]
�

∑
1≤n≤N

1

n
log

n

n/kn − 1
.

Therefore

(70) G3 �
∑

1≤n≤N

1

n
log

nkn
n− kn

.

It follows from (8) that, there exists constant n0, such that kn ≤ n/2 for all
n > n0. Hence, for any n > n0,

log
nkn
n− kn

≤ log
nkn

n− n/2
= log 2kn,
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and

(71) log
nkn
n− kn

� log kn.

Relations (70), (71) together with assumption (8) imply

(72) G3 �
N∑
n=1

1

n
log kn �

N∑
n=1

1

n
(log n)1−α � (logN)2−α

for some α > 0. Due to (67)–(69) and (72)

(73)
∑

2
� (logN)2−α

for some α > 0. It follows from (65), (66) and (73) that

V ar

(
N∑
n=1

1

n
I
(
M (kn)
n ≤ un

))
� (logN)2−α

for some α > 0. Thus, (64) holds for any ε > 0.
Consequently, by the already mentioned Lemma 3.1 in Csaki and

Gonchigdanzan [1], condition (63) is also satisfied. In turn, as (63) holds,
then Lemma 3 and the regularity property of logarithmic means imply (1).
Thus, statement (i) of our assertion has been proved. �

Proof of Theorem 1 (ii). Let x be arbitrary real number. It is easy to
check that, provided {an}, {bn} are such as in (2), then, under the assump-
tions of our theorem,

lim
n→∞

P
(
an

(
M (kn)
n − bn

)
≤ x

)
= Φ (x)

(see also the remark on p. 416 in Stadtmueller [4]). This and Theorem 2.5.2
in Leadbetter et al. [3] imply that assumptions (11), (12) are satisfied with:
un := x/an+bn, τ := x. It is easily seen now that statement (ii) of Theorem 1
is a special case of its, the earlier proved, statement (i). �

Remark. Suppose that kn = [(log n)c] for some 0 < c < 1, and the number
β > 1 satisfies the condition cβ < 1. Let in addition, X1, X2, . . . be a sta-
tionary zero mean Gaussian sequence with unit variance and the covariance
function r (t) = e−λt for some λ > 0. Then, the assumptions (7)–(10) of
Theorem 1 are fulfilled and the property in (3) holds with {an}, {bn} given
by (2).

We now prove our second main result.

Proof of Theorem 2 (i). Let k denote a fixed positive integer, M (k)
n stand

for the kth largest maximum of X1, . . . , Xn. By applying assumption (13)
on the covariance function r (t) = Cov (X1, X1+t) and assumption (14) on
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the sequence {un}, and by using similar methods to that applied in the
proofs of Lemmas 1, 2, we can show that if m ≤ n/k − 1, then:

E
∣∣∣I (M (k)

n ≤ un
)
− I

(
M (k)
m,n ≤ un

)∣∣∣� 1

nγ
+

km

n− k
for some γ > 0,∣∣∣Cov (I (M (k)

m ≤ um
)
, I
(
M (k)
m,n ≤ un

))∣∣∣� 1

nγ
for some γ > 0.

This and the relation in (67), applied for kn ≡ k, yield

(74)
∣∣∣Cov (I (M (k)

m ≤ um
)
, I
(
M (k)
n ≤ un

))∣∣∣� 1

nγ
+

km

n− k

for some γ > 0, provided m ≤ n/k − 1. Suppose that
{
X̃i

}
is an i.i.d.

standard normal sequence and M̃
(k)
n denotes the kth largest maximum of

X̃1, . . . , X̃n. It follows from Theorem 2.2.1 in Leadbetter et al. [3] that,
under the assumptions of our theorem,

(75) lim
n→∞

P
(
M̃ (k)
n ≤ un

)
= e−τ

k−1∑
s=0

τ s

s!
,

where τ satisfies (14). By using similar methods to those applied in the
estimation of D1 in the proof of Lemma 1, it is easy to check that

(76)
∣∣∣P (M (k)

n ≤ un
)
− P

(
M̃ (k)
n ≤ un

)∣∣∣� 1

nγ

for some γ > 0. Relations (75) and (76) imply

(77) lim
n→∞

P
(
M (k)
n ≤ un

)
= e−τ

k−1∑
s=0

τ s

s!
,

provided τ fulfils (14). Thus, in view of the already mentioned Lemma 3.1
in Csaki and Gonchigdanzan [1], in order to prove (4), it is enough to show
that

(78) V ar

(
N∑
n=k

1

n
I
(
M (k)
n ≤ un

))
� (logN)2 (log logN)−(1+ε)

for some ε > 0. We have

(79) V ar

(
N∑
n=k

1

n
I
(
M (k)
n ≤ un

))
≤
∑

3
+
∑

4
,

where
∑

3,
∑

4 are defined as
∑

1,
∑

2 in (65), but for the case, when kn ≡ k.
Obviously

(80)
∑

3
<∞.
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In addition, by (74),

(81)

∑
4
�

∑
k≤m<n≤N,
m≤n/k−1

1

mn

1

nγ
+

∑
k≤m<n≤N,
m≤n/k−1

1

mn

km

n− k
+

∑
k≤m<n≤N,
m>n/k−1

1

mn

=: H1 +H2 +H3.

By proceeding analogously as in the estimation of G1, G2 in the proof of
Theorem 1 (i), we immediately get

(82) H1 +H2 � logN.

Furthermore, it is easily seen from the definition of H3 in (81) that

(83) H3 �
N∑
n=k

1

n
� logN.

Thus, due to (81)–(83),

(84)
∑

4
� logN.

By (79), (80) and (84), we obtain

V ar

(
N∑
n=k

1

n
I
(
M (k)
n ≤ un

))
� logN.

Hence, the relation in (78) is satisfied. Consequently, by Lemma 3.1 in
Csaki and Gonchigdanzan [1],

lim
N→∞

1

logN

N∑
n=k

1

n

{
I
(
M (k)
n ≤ un

)
− P

(
M (k)
n ≤ un

)}
= 0 a.s.

This, (77) and the regularity property of logarithmic means yield (4), which
is statement (i) of Theorem 2. �

Proof of Theorem 2 (ii). Let x be arbitrary real number. Since (13)
holds, it follows from Theorem 4.3.3 in Leadbetter et al. [3] that, provided
{an}, {bn} are such as in (5), we have

lim
n→∞

n (1− Φ (x/an + bn)) = e−x.

It is easily seen now that statement (ii) of Theorem 2 is a special case of
its, the earlier proved, statement (i), with: un := x/an + bn, τ := e−x. �
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