doi: 10.2478/v10062-009-0005-y

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXIII. 2009	SECTIO A	49 - 53
VOL. LIXIII, 2003	SECTIO A	43 00

ANNA BEDNARSKA

Almost symplectic structures on the linear frame bundle from linear connection

ABSTRACT. We describe all $\mathcal{M}f_m$ -natural operators $S: Q \rightsquigarrow Symp P^1$ transforming classical linear connections ∇ on *m*-dimensional manifolds M into almost symplectic structures $S(\nabla)$ on the linear frame bundle P^1M over M.

Let V be a real vector space of even dimension. A bilinear form $\varpi: V \times V \to \mathbb{R}$ is called a symplectic form if it is antisymmetric and nondegenerate, i.e. it satisfies

 $\varpi(v,v) = 0$ for all $v \in V$ and if $\varpi(v,u) = 0$ for all $v \in V$, then u = 0.

A vector space V is a symplectic vector space if it is equipped with a symplectic form, [1].

Let $\mathcal{M}f_m$ denote the category of *m*-dimensional manifolds and their embeddings and $\mathcal{F}\mathcal{M}$ denote the category of fibred manifolds and fibred maps between them.

For any *m*-dimensional manifold M we have the linear frame bundle $P^1M = invJ_0^1(\mathbb{R}^m, M)$ of the manifold M. This is a principal bundle with corresponding Lie group $GL(m) = G_m^1 = invJ_0^1(\mathbb{R}^m, \mathbb{R}^m)_0$, which acts on P^1M on the right via compositions of jets. Every map $\psi: M_1 \to M_2$ from the category $\mathcal{M}f_m$ induces a map $P^1\psi: P^1M_1 \to P^1M_2$ by $P^1\psi(j_0^1\varphi) = j_0^1(\psi \circ \varphi)$, where $\varphi: \mathbb{R}^m \to M_1$ is a map from the category $\mathcal{M}f_m$. The correspondence $P^1: \mathcal{M}f_m \to \mathcal{F}\mathcal{M}$ is a bundle functor in the sense of [3].

²⁰⁰⁰ Mathematics Subject Classification. 58A20.

Key words and phrases. Classical linear connection, almost symplectic structure, linear frame bundle, natural operator.

A. Bednarska

For any 2n-dimensional manifold N we have an almost symplectic structures bundle $Symp(N) = \bigcup_{y \in N} Symp(T_yN)$ over the manifold N, where $\widetilde{Symp}(T_yN)$ denotes the set of symplectic forms $\varpi : T_yN \times T_yN \to \mathbb{R}$ on the tangent space T_yN . The bundle Symp(N) is a subbundle (but not vector subbundle) of a vector bundle $T^*N \otimes T^*N$ of tensors of type (0,2) over N. Sections $\Omega : N \to Symp(N)$ are called almost symplectic structures on the manifold N. Every embedding $\psi : N_1 \to N_2$ induces a fibred map $Symp(\psi) : Symp(N_1) \to Symp(N_2)$ being restriction of $T^*\psi \otimes T^*\psi : T^*N_1 \otimes T^*N_1 \to T^*N_2 \otimes T^*N_2$ to Symp(N). The correspondence $Symp: \mathcal{M}f_{2n} \to \mathcal{F}\mathcal{M}$ is a bundle functor in the sense of [3].

Let M be an m-dimensional manifold. We have the classical linear connection bundle $QM := (id_{T^*M} \otimes \pi^1)^{-1}(id_{TM}) \subset T^*M \otimes J^1TM$ of the manifold M, where $\pi^1 \colon J^1TM \to TM$ is the projection of the first jet prolongation $J^1TM = \{j_x^1X \colon X \in \mathfrak{X}(M), x \in M\}$ of the tangent bundle TM of the manifold M. Sections $\tilde{\nabla} \colon M \to QM$ correspond bijectively to classical linear connections on M. Every embedding $f \colon M_1 \to M_2$ induces a fibred map $Qf \colon QM_1 \to QM_2$ covering f. The correspondence $Q \colon \mathcal{M}f_m \to \mathcal{FM}$ is a bundle functor in the sense of [3].

Let $\{A_i^{j*}\}$, i, j = 1, ..., m be the standard basis in $\mathfrak{gl}(m) = \mathcal{L}ie(GL(m))$. For a principal fibre bundle P^1M the action of group GL(m) on P^1M induces a homomorphism σ of Lie algebra $\mathfrak{gl}(m)$ of group GL(m) into Lie algebra $\mathfrak{X}(P^1M)$ of vector fields on P^1M . For every $A \in \mathfrak{gl}(m)$, a vector field $A^* = \sigma(A)$ is called the fundamental vector field corresponding to A. Since the action of group GL(m) on P^1M sends each fibre into itself, therefore A_u^* is tangent to the fibre at each $u \in P^1M$, [2].

Let ∇ be a classical linear connection on *m*-dimensional manifold *M*. For every $\xi \in \mathbb{R}^m$ we define the standard horizontal vector field $B(\xi)$ on P^1M as follows. For each $u \in P^1M$, $u \colon \mathbb{R}^m \to T_{\pi(u)}M$, a vector $(B(\xi))_u$ is the unique horizontal vector at u such that $T\pi((B(\xi))_u) = u(\xi)$, where $\pi \colon P^1M \to M$, [2].

The canonical form θ of bundle P^1M is \mathbb{R}^m -valued 1-form on P^1M defined by

$$\theta(X) = u^{-1}(T\pi(X)) \quad \text{for } X \in T_u(P^1M),$$

where $\pi \colon P^1 M \to M$ and $u \colon \mathbb{R}^m \to T_{\pi(u)}(M), [2].$

For a given connection ∇ on P^1M we define a 1-form ω on P^1M with values in Lie algebra $\mathfrak{gl}(m)$ of group GL(m) as follows. For each $X \in T_u(P^1M)$ we define $\omega(X)$ to be the unique $A \in \mathfrak{gl}(m)$ such that $(A^*)_u$ is equal to the vertical component of vector X. The form ω is called the connection form of the given connection ∇ , [2].

Let B_1, \ldots, B_m be the standard horizontal vector fields corresponding to basic vectors e_1, \ldots, e_m of space \mathbb{R}^m and let $\{A_i^{j*}\}$ be fundamental vector fields corresponding to basic vectors $\{A_i^j\}$ of Lie algebra $\mathfrak{gl}(m)$. It is easy to verify that $\{B_l, A_i^{j*}\}$ and $\{\theta^i, \omega_i^i\}$ are dual to each other, i.e. they satisfy

$$\begin{aligned} \theta^k(B_l) &= \delta_l^k, \quad \theta^k(A_i^{j*}) = 0, \\ \omega_r^k(B_l) &= 0, \quad \omega_r^k(A_i^{j*}) = \delta_i^k \delta_r^j, \end{aligned}$$

where θ^i are components of the canonical 1-form and ω^i_j are components of the connection form.

Proposition 1 ([2]). The $m^2 + m$ vector fields $\{B_k, A_i^{j^*}; i, j, k = 1, ..., m\}$ define an absolute parallelism in the bundle P^1M .

The following definition of a natural operator is particular case of an idea of natural operator which was considered in [3].

Definition 1. An $\mathcal{M}f_m$ -natural operator $S: Q \rightsquigarrow Symp P^1$ is a family of $\mathcal{M}f_m$ -invariant regular operators $S = (S_M)$

$$S_M \colon Q(M) \to Symp\left(P^1M\right)$$

for any manifold M from the category $\mathcal{M}f_m$, where $\underline{Q}(M)$ is the set of all linear connections on the manifold M (sections of $\overline{Q}(M) \to M$) and $\underline{Symp}(P^1M)$ is the set of all almost symplectic structures on P^1M (sections of $Symp(P^1M) \to P^1M$). The invariance means that if $\nabla_1 \in \underline{Q}(M_1)$ and $\nabla_2 \in \underline{Q}(M_2)$ are ψ -related by $\psi: M_1 \to M_2$, that is $Q(\psi) \circ \nabla_1 = \nabla_2 \circ \psi$, then $S(\nabla_1)$ and $S(\nabla_2)$ are $P^1\psi$ -related, that is $Symp(P^1\psi) \circ S(\nabla_1) =$ $S(\nabla_2) \circ P^1\psi$. The regularity means that smoothly parametrized families of classical linear connections are transformed by S on smoothly parametrized families of almost symplectic structures.

In the present note we will classify all natural operators S and obtained result will be modification of result in [4].

Remark 1. In [4] there were described geometric constructions on higher order frame bundles $P^r M$. In the present paper we describe only case of linear frame bundle $P^1 M$. The generalization of this problem for $P^r M$ is not possible, because dimension of $P^r M$ for r > 1 does not have to be even.

For given connection $\nabla \in \underline{Q}(M)$ with respect to the global basis of vector fields $\{B_k, A_i^{j*}\}$ on P^1M we have a canonical (in ∇) fibred diffeomorphism

$$K_{\nabla} \colon P^1M \times \widetilde{Symp}\left(\mathbb{R}^{m^2+m}\right) \to Symp\left(P^1M\right)$$

covering id_{P^1M} defined by the condition that the matrix of map $K_{\nabla}(u(x), \varpi)$ in the basis $\{B_k(\nabla)(u(x)), A_i^{j*}(u(x))\}$ is the same as the one of the symplectic form ϖ in the canonical basis of space \mathbb{R}^{m^2+m} . Let $Z^s = J_0^s(Q(\mathbb{R}^m))$, $s = 0, 1, ..., \infty$ be the set of s-jets $j_0^s \nabla$ of all classical linear connections ∇ on \mathbb{R}^m satisfying

$$\sum_{j,k=1}^{m} \nabla_{jk}^{i}(x) x^{j} x^{k} = 0 \text{ for } i = 1, \dots, m,$$

it means that the usual coordinates x^1, \ldots, x^m on \mathbb{R}^m are ∇ -normal with center $0 \in \mathbb{R}^m$.

Example 1. General construction: Let $\mu: Z^{\infty} \to \widetilde{Symp}(\mathbb{R}^{m^2+m})$ be a map satisfying the following local finite determination property.

For any $\rho \in Z^{\infty}$ we can find an open neighborhood $U \subset Z^{\infty}$ of jet ρ , a natural number s and a smooth map $f: \pi_s(U) \to \widetilde{Symp}(\mathbb{R}^{m^2+m})$ such that $\mu = f \circ \pi_s$ on U, where $\pi_s: Z^{\infty} \to Z^s$ is the jet projection. (A simple example of such μ is $\mu = f \circ \pi_s$ for smooth $f: Z^s \to \widetilde{Symp}(\mathbb{R}^{m^2+m})$ and for finite number s.)

Given a classical linear connection ∇ on an *m*-dimensional manifold Mwe define an almost symplectic structure $S^{\langle \mu \rangle}(\nabla)$ on P^1M as follows. Let $u(x) \in (P^1M)_x, x \in M$. Choose a ∇ -normal coordinate system ψ on Mwith center x such that $P^1\psi(u(x)) = l^0 = j_0^1(id_{\mathbb{R}^m})$. Such a coordinate system ψ exists. Then $germ_x(\psi)$ is uniquely determined. We put

$$S^{\langle \mu \rangle}(\nabla)_{u(x)} = Symp \, (P^1(\psi^{-1}))(K_{\psi_*\nabla}(l^0, \mu(j_0^\infty(\psi_*\nabla)))).$$

Since $germ_x(\psi)$ is uniquely determined, then above definition is correct. The family $S^{\langle \mu \rangle} : Q \rightsquigarrow Symp P^1$ is an $\mathcal{M}f_m$ -natural operator.

Theorem 1. Any $\mathcal{M}f_m$ -natural operator $S: Q \rightsquigarrow Symp P^1$ is of the form $S^{<\mu>}$ for some uniquely determined (by S) function $\mu: Z^{\infty} \to \widetilde{Symp}(\mathbb{R}^{m+m^2})$ satisfying local finite determination property.

Proof. Let $S: Q \rightsquigarrow Symp P^1$ be an $\mathcal{M}f_m$ -natural operator. Define $\mu: Z^{\infty} \rightarrow Symp(\mathbb{R}^{m+m^2})$ by

$$(l^0, \mu(j_0^{\infty} \nabla)) = K_{\nabla}^{-1}(S(\nabla)(l^0)).$$

Then by non-linear Peetre theorem, [3], μ satisfies local finite determination property. Then by definitions of μ and $S^{\langle \mu \rangle}$ we have that $S(\nabla)(l^0) = S^{\langle \mu \rangle}(\nabla)(l^0)$ for any classical linear connection ∇ on \mathbb{R}^m such that the identity map $id_{\mathbb{R}^m}$ is a ∇ -normal coordinate system with center $0 \in \mathbb{R}^m$. Then by the invariance of S and $S^{\langle \mu \rangle}$ with respect to normal coordinates we deduce that $S = S^{\langle \mu \rangle}$.

Remark 2. Symplectic geometry methods are key ingredients in the study of dynamical systems, mathematical physics, analytical mechanics, differential geometry, [1], [5].

References

- [1] Berndt, R., An Introduction to Symplectic Geometry, Graduate Studies in Mathematics, Vol 26, American Mathematical Society, Providence, Rhode Island, 2001.
- [2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vol I, Interscience Publisher, New York–London, 1963.
- [3] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [4] Kurek, J., Mikulski, W. M., Riemannian structures on higher order frame bundles from classical linear connections, Differential Geometry, Proceedings of the VIII International Colloquium Santiago de Compostela, World Scientific 2009, 296–300.
- [5] León, M. de, Rodrigues, P. R., Methods of Differential Geometry in Analytical Mechanics, North-Holland Math. Stud. 158, Amsterdam, 1989.

Anna Bednarska Institute of Mathematics Maria Curie-Sklodowska University pl. M. Curie-Sklodowskiej 1 20-031 Lublin Poland e-mail: bednarska@hektor.umcs.lublin.pl

Received June 22, 2009