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On some definition of expectation
of random element in metric space

Abstract. We are dealing with definition of expectation of random elements
taking values in metric space given by I. Molchanov and P. Teran in 2006. The
approach presented by the authors is quite general and has some interesting
properties. We present two kinds of new results:

• conditions under which the metric space is isometric with some real
Banach space;

• conditions which ensure “random identification” property for random
elements and almost sure convergence of asymptotic martingales.

1. Introduction. Expectation of real random variable is basic character-
istic which is used in probability theory. There is extension to random
elements taking values in Banach spaces – a Bochner integral. There is the
following question:

“What about metric spaces without linear structure?”
There is a lot of solutions of this problem. Probably the first (1949)

who gave a concept of mathematical expectation of a random element with
values in a metric space was Doss [5].

After this paper many other authors dealt with the problem of defining
expectation, there were many different concepts and solutions of this prob-
lem in different kinds of metric spaces: Fréchet [6] and Pick [12] considered
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expectation defined as a minimizer of the “variance”; Herer [7], [8], [9] up-
lifted the definition given by Doss to random sets and gave new definition
of expectation in spaces with negative curvature.

There is a lot of results concerning martingales in metric spaces and
almost sure convergence of martingales (see Beneš [3], Herer [7], [9], Sturm
[13]).

We are dealing with definition of expectation given in [14]. The authors
presented new and quite general approach basing on properties which usual
expectation possess. The results seem to be interesting especially because
they in some sense unify different ways of defining expectation. Moreover,
after slight modification the definition is restrictive enough to prove almost
sure convergence of strongly tight asymptotic martingales, which is false in
general.

In the beginning we present the definition of convex combination, convex
combination space, the definition of random elements and their expectation
and conditional expectation which can be found in [14]. Section 3 presents
some problems which can be encountered when one is dealing with defini-
tion of expectation in non-linear metric space. The final result of this part
is characterization theorem. Next part is devoted to the “random identifica-
tion property”. Section 5 gives some background in the theory of asymptotic
martingales and contains the result concerning almost sure convergence of
amarts. Finally Section 6 provides some examples illustrating the results.

2. Convex combinations, integrability and expectation. We will
present a short introduction to approach presented by I. Molchanov and
P. Teran in [14].

Let (E, d) be a separable, complete metric space, endowed with a convex
combination operation which for all n ≥ 2, numbers λ1, λ2, . . . , λn > 0
satisfying

∑n
i=1 λi = 1, and all u1, u2, . . . , un ∈ E produces an element of

E denoted by [λ1u1;λ2u2; . . . ;λnun] or [λiui]
n
i=1. Assume that [1u] = u for

every u ∈ E and the following properties hold.

(i) [λiui]
n
i=1 = [λσ(i)uσ(i)]

n
i=1 for any permutation σ of {1, 2, . . . , n};

(ii) [λiui]
n+2
i=1 = [λ1u1;λ2u2; . . . ; (λn+1 + λn+2)

[
λn+j

λn+1+λn+2
un+j ]

2
j=1

]
;

(iii) for any sequence of numbers λ(k) → λ ∈ (0, 1); k →∞[
λ(k)u;

(
1− λ(k)

)
v
]
→ [λu; (1− λ)v]; k →∞;

(iv) ∀(λ ∈ (0, 1)) ∀(u1, u2, v1, v2 ∈ E):

d([λu1; (1− λ)v1], [λu2; (1− λ)v2]) ≤ λd(u1, u2) + (1− λ)d(v1, v2);

(v) for each u ∈ E, there exists lim
n→∞

[n−1u]ni=1, which will be denoted by

Ku.
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Spaces satisfying conditions given above will be called convex combination
spaces.

Let (Ω,A, P ) be a non-atomic probability space. We will use the following
notation:

• A mapping X : Ω → E such that there is a measurable partition
{Ω1, . . . ,Ωm} of Ω such that X takes a constant value ui on each
non-null set Ωi, for i = 1, 2, . . . ,m is called a simple random element.
• For a simple random element X taking values x1, x2, . . . , xn with

probabilities p1, p2, . . . , pn respectively, define the expectation of ran-
dom element X by

EX = [piKxi]
n
i=1.

• A random element X is called integrable if d(u0, X) is integrable
real-valued random variable for some u0 ∈ E.

Remark 1. Any integrable random element may be approximated by a con-
vergent sequence of simple, integrable random elements and therefore the
definition of expectation may be extended to the set of all integrable random
elements.

3. Characterization of Banach spaces. We will start this section with
a simple lemma.

Lemma 1. Let A be a measurable set such that 0 < P (A) < 1 and X be
an integrable random element, then

EX = [P (A)E(X|A);P (A′)E(X|A′)].

Proof. Let us consider first the case of simple, integrable random element
X. Assume that X takes values ui with probabilities pi respectively for
i = 1, . . . , n. Using property (ii) and simple computations we have:

EX = [piKui]
n
i=1

=

[
P (A)

[
P (X = ui ∧A)

P (A)
Kui

]n
i=1

;P (A′)

[
P (X = ui ∧A′)

P (A′)
Kui

]n
i=1

]
=
[
P (A) [P (X = ui|A)Kui]

n
i=1 ;P (A′)

[
P (X = ui|A′)Kui

]n
i=1

]
= [P (A)E(X|A);P (A′)E(X|A′)].

If the random element X is not simple we may use the approximation and
obtain the same result. �

Note that this lemma is not obvious if this property holds in non-linear
space. There is the following example:

Example 1 (Sturm [13]). Consider E = {1, 2, 3} × [0,∞) with metric:

d((i;x), (j; y)) =

{
|x− y|, i = j,

x+ y, i 6= j.
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This is an example of global non-positive curvature metric space.
Define a random element X:

X(ω) = (1, 1), for ω ∈ A1, X(ω) = (2, 1), for ω ∈ A2,

X(ω) = (3, 1), for ω ∈ A3,

where P (A1) = P (A2) = P (A3) = 1
3 , A1 ∪A2 ∪A3 = Ω. Consider expecta-

tion in the sense of Fréchet i.e.

EFX =

{
a ∈ E : Ed2(a,X) = min

u∈E
Ed2(u,X)

}
.

It is quite obvious that

EF (X) = (., 0).

Note that we have also for any i = 1, 2, 3,

EF (X|A′i) = (., 0), EF (X|Ai) = (i, 1);

EF (X|Ai)P (Ai) + EF (X|A′i)P (A′i) = (i, 1/3) 6= EF (X).

Remark 2. This example shows that the definition of expectation does not
give natural convex combination as is written in [14]. The property (ii) may
not be satisfied if we define the convex combination operation [p1, xi]

n
i=1

as an expectation of random element taking values xi with probability pi
respectively.

The reason of this fact is that not for all definitions of expectation in
metric spaces Lemma 1 is true. Fréchet expectation is one of the examples.
Moreover I. Molchanov and P. Teran mentioned that strong law of large
numbers proved by K. T. Sturm for random elements taking values in global
NPC spaces (see [13]) follows from their strong law of large numbers but
this is true only in case when Lemma 1 holds but this case is not really
interesting because then we have the following:

Theorem 1 (see [2]). Let E be a Fréchet expectation operator defined on ex-
ternally convex, global NPC space (E, d). If the condition EX = E(E(X|Y ))
is satisfied for any square integrable random element X and any random el-
ement Y taking two values then (E, d) is isometric with some strictly convex
real Banach space.

4. Random identification property. Let us slightly modify the defini-
tion of convex combination namely replace condition (iv) by:

(iv’) ∀(λ ∈ (0, 1)) ∀(u, v, w ∈ E; d(u, v) > 0):

0 < d([λu; (1− λ)w], [λv; (1− λ)w]) ≤ λd(u, v);

and add the following assumption:

(vi) ∀(u, v ∈ E): d(u, v) > 0⇒ d(Ku,Kv) > 0.
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Spaces satisfying conditions (i)–(vi) and (iv’) will be called smooth convex
combination spaces.

In such spaces it is possible to prove “random identification property”
which is crucial point in the proofs of theorems concerning almost sure
convergence of asymptotic martingales.

To prove this property we will start with the following:

Lemma 2. Let B̄r(u) = {x ∈ E; d(x, u) ≤ r} denote the closed ball in E.
For any u1, u2, . . . , un ∈ B̄r(u) and any λ1, λ2, . . . , λn ≥ 0,

∑n
i=1 λi = 1,

[λiKui]
n
i=1 ∈ B̄r(Ku).

Proof. Let x = [λiKui]
n
i=1. We have

d(x,Ku) = d([λiKui]
n
i=1, [λiKu]ni=1)

≤
n∑
i=1

λid(Kui,Ku) ≤
n∑
i=1

λid(ui, u) ≤ r. �

Corollary 1. Let X be a random element. If there is a closed ball B̄r(u)
such that P (X ∈ B̄r(u)) = 1, then X is integrable and EX ∈ B̄r(Ku).

Proof. If X is a simple random element, then this result is simple conse-
quence of Lemma 2. If X is not simple, then there is a sequence of random
elements satisfying conditions of Lemma 2 with the same ball and the result
follows by approximation and closeness of the ball B̄r(Ku). �

Theorem 2 (Random identification). Let X1, X2 ∈ L1
E. If for any random

variable τ : Ω→ {1, 2}, EXτ = EX1, then X1 = X2 (a.s.).

Proof. First suppose that X1 and X2 are simple random elements such
that

P{ω;X1(ω) 6= X2(ω)} > 0.

Let A = {ω;X1(ω) 6= X2(ω)}. There is a subset B ⊂ A such that for all
ω ∈ B : X1(ω) = u, X2(ω) = v, where d(u, v) > 0 and P (B) = δ > 0.

Let

τ(ω) =

{
1; ω 6∈ B;

2; ω ∈ B.

We will show that d(EXτ , EX1) > 0. Let

X1(ω) =


x1; ω ∈ A1;
...
xn; ω ∈ An;

u; ω ∈ B;



44 A. Bator and W. Zięba

where
⋃n
i=1Ai ∪B = Ω. We have

EX1 = [P (A1)K(x1);P (A2)Kx2; . . . ;P (An)Kxn; δKu]

= [(1− δ)x; δKu],

EXτ = [(1− δ)x; δKv]

where x =
[
P (Ai)
1−δ Kxi

]n
i=1

. Assume that

0 = d(EX1, EXτ ) = d([(1− δ)x; δKu], [(1− δ)x; δKu]).

By (iv) it implies that d(Ku,Kv) = 0 but by (vi) it gives d(u, v) = 0 and
this contradicts the construction of τ and ends the proof in this case.

If X1, X2 ∈ L1
E are any random elements, such that P (X1 6= X2) > 0,

then by separability of E there are elements u, v ∈ E and a set C ⊂ Ω such
that d(u, v) > 0, P (C) > 0,

X1 ∈ B̄ε(u); X2 ∈ B̄ε(v) for ω ∈ C and some ε < d(Ku,Kv)/2.

Define

τ =

{
1; ω 6∈ C;

2; ω ∈ C.
Using Lemma 1 we obtain

EX1 = [P (C)E(X1|C);P (C ′)E(X1|C ′)];
EXτ = [P (C)E(X2|C);P (C ′)E(X1|C ′)].

Note that by Lemma 2 we have

E(X1|C) ∈ B̄ε(K(u)); E(X2|C) ∈ B̄ε(K(v)).

Assume that

0 = d(EX1, EXτ )

= d
(
[P (C)E(X1|C);P (C ′)E(X1|C ′)], [P (C)E(X2|C);P (C ′)E(X1|C ′)]

)
.

Similarly to the proof for simple random elements case it implies that
E(X1|C) = E(X2|C) but this contradicts the fact that B̄ε(K(u))∩B̄ε(K(u))
= ∅ and ends the proof. �

5. Amarts. Now let N denote the set of natural numbers, i.e. N={1, 2, . . .}.
Let (Ω,A, P ) be a probability space and let (An, n ≥ 1) be an increasing
sequence of sub-σ-fields of A (i.e. An ⊂ An+1 ⊂ A for every n ∈ N).
A mapping τ : Ω → N will be called a stopping time with respect to (An)
if and only if for every n ∈ N the event {τ = n} belongs to An. A stopping
time τ will be called bounded if and only if there exists M ∈ N such that
P (τ ≤M) = 1. A set of all bounded stopping times will be denoted by T .

We write τ ≤ σ meaning a.s. inequality defining the partial ordering in T .



On some definition of expectation... 45

Definition 1. Let {Xn} be an integrable family of random elements which
is adapted to {An}. We call {Xn,An} an amart if the net {EXτ ; τ ∈ T} is
convergent to some u ∈ E,

EXτ → u, τ ∈ T.
An amart {Xn,An} is integrable (Xn ∈ L1

E) if for some u0 ∈ E
sup
n≥1

Ed(u0, Xn) <∞.

Definition 2 (Kruk, Zięba [11]). We say that a sequence {Xn} of r.e. is
strongly tight if for every ε > 0 there is a compact set Kε ⊂ S such that

P

( ∞⋂
n=1

[ω : Xn(ω) ∈ Kε]

)
> 1− ε.

Using Theorem 2 we are able to prove the following:

Theorem 3. Every integrable strongly tight amart taking values in smooth
convex combination space and such that

(1) ∃(u0 ∈ E) ∃(Y ∈ L1
E) : sup

n≥1
d(u0, Xn) < d(u0, Y ).

converges a.s.

5.1. Proof. To prove this theorem we will start with the following:

Lemma 3. Let {Xn} be a strongly tight sequence of r.e. If the sequence
is not (a.s.) convergent, then there exist two r.e. X1 and X2 such that
P (X1 6= X2) > 0 and X1, X2 are cluster points of the sequence Xn with
probability 1.

Proof. Fix ε > 0 and let Bε =
⋂∞
n=1 [ω;Xn(ω) ∈ Kε]. For every ω ∈ Bε

the sequence {Xn(ω); n ≥ 1} has cluster points, so we may conclude that
the sequence {Xn(ω); n ≥ 1} has cluster points a.s.

Let A(ω) be a set of all cluster points of the sequence {Xn(ω); n ≥ 1}
and ρ(A(ω)) denote the diameter of the set A(ω). We know that A(ω) is
a measurable multifunction (see [10]).

If ρ(A(ω)) = 0 a.s., then Xn
n→∞−−−→
a.s.

A(ω), if not, then there exist two

measurable selections X1 and X2 of A such that P (d(X1, X2) > 0) > 0. �

Lemma 4. Let {Xn} be a sequence of random elements adapted to an in-
creasing sequence {An} of sub-σ-fields of A. Let X be a random element
such that X(ω) is a cluster point of a sequence Xn(ω) a.s. Then there is
a sequence of stopping times {τn} such that n ≤ τn ≤ τn+1 and Xτn → X
(a.s.) as n→∞.

Proof. It is enough to show that there is a sequence of stopping times
τn satisfying P (d(Xτn , X) ≤ ε) > 1 − ε because we can always choose
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a subsequence of such sequence which is convergent a.s. So we need to show
that for any n ∈ N and any ε > 0 there is τ ∈ T such that

P (d(Xτ ;X) ≤ ε) > 1− ε.

Given ε > 0 and n0 we can find n′ ≥ n0 and random element X ′ such that
X ′ is An′ measurable and

P
(
d(X ′;X) ≤ ε

3

)
> 1− ε

3

(we know that X is A∞ measurable where A∞ = σ (
⋃∞
n=1An)).

Further since X(ω) is a cluster point of the sequence {Xn(ω)} (a.s.), it
follows that{
ω; d

(
X ′(ω);X(ω)

)
≤ ε

3

}
⊂
{
ω; d(X ′(ω);Xn(ω)) ≤ 2ε

3
for some n ≥ n′

}
.

Now we can find n′′ ≥ n′ such that P (A) > 1− 2ε
3 , where

A =

{
ω; d(X ′(ω);Xn(ω)) ≤ 2ε

3
for some n′ ≤ n ≤ n′′

}
.

Define τ by

τ(ω) =

{
min{n; n′ ≤ n ≤ n′′, d(Xn(ω);X ′(ω)) ≤ 2ε

3 }; ω ∈ A;

n′′; ω 6∈ A.

Then τ is An′′ measurable, τ ∈ T and

P (d(Xτ ;X) > ε) ≤ P
(
d
(
Xτ ;X ′

)
>

2ε

3

)
+ P

(
d
(
X;X ′

)
>
ε

3

)
< ε.

This ends the proof. �

Finally we are in position to justify Theorem 3.

Proof of Theorem 3. Assume that this is false. By Lemma 3 and con-
dition (1) there exist two random elements X ′1, X

′
2 ∈ L1

E such that X ′1(ω)
and X ′2(ω) are cluster points of the sequence {Xn,An} almost surely and
P (X ′1 6= X ′2) > 0.

In view of Theorem 2 there exist random elements X∗1 , X
∗
2 ∈ L1

E such that
for almost every ω ∈ Ω, X∗1 (ω) and X∗2 (ω) are cluster points of {Xn,An},
P (X∗1 6= X∗2 ) > 0 and d(EX∗1 , EX

∗
2 ) > 0 (ifX ′1 andX ′2 do not satisfy the last

condition one may take X∗1 = X ′1 and X∗2 = X ′τ for some τ : Ω→ {1, 2}).
Then by Theorem 4 there exist two sequences {τn ∈ Σ} and {σn ∈ Σ}

such that Xτn
a.s.−−→ X∗1 and Xσn

a.s.−−→ X∗2 , and hence by the definition of
amart it follows that EXτn → u and EXσn → u, which yields EX∗1 =
EX∗2 = u. This contradiction ends the proof. �
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6. Examples.

Example 2 (Example 5, Molchanov, Teran [14]). Define the convex com-
bination operation on a linear normed space E as

[λiui]
n
i=1 =

∑
λpi ui

for some p > 1. This operation does not satisfy condition (vi) and the ran-
dom identification does not hold since for any integrable random element
X taking values in this space EX = 0.

Remark 3. If the space E contains two points u, v such that Ku = Kv and
d(u, v) > 0, then we can construct two random elements X1 = u (a.s.) and
X2 = v (a.s) such that P (X1 = X2) = 0 and for any measurable

τ : Ω→ {1, 2}, EXτ = EX1 = EX2.

This shows that in fact condition (vi) is a necessary condition if we want
random identification to hold.

Example 3. Consider the following example. Let E be a space of random
elements or a probabilistic distributions satisfying the following condition

lim sup
t→0

|f ′X(t)| <∞

where fX denotes the characteristic function of the random variable X. On
this set we introduce the function given by:

µ(X,Y ) = sup{|t|−1|fX(t)− fY (t)|}.
This function is an ideal probability metric of order s = 1 (see [15], Example
1.4.2.) and note that (E, µ) is a metric space. By the properties of ideal
probability metric we know that:

• µ(X +Z, Y +Z) ≤ µ(X,Y ) for any two random variables X,Y and
independent variable Z.
• µ(cX, cY ) = |c|µ(X,Y ) for any two random variables X,Y and any

constant c 6= 0.
Furthermore on the set E introduce a convex combination operation of ran-
dom variables X1, X2, . . . , Xn in the following way:

[λi, Xi]
n
i=1 is a random variable distributed as

∑n
i=1 λiXi, where Xi are

chosen to be independent.
It is quite easy to check that conditions (i)–(v) hold.
The strong law of large numbers implies that KX is the expectation of X

if this expectation exists. If the expectation does not exist the law of large
numbers does not hold, but still there may be a convergence in distribution
to some stable law of order s = 1, i.e. to a random variable which has
distribution with logarithm of characteristic function of the form

ln fX(t) = −σ|t|
(

1 + iβ
2

π
(sgn t) ln |t|

)
+ itµ,
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where µ ∈ R, β ∈ [−1, 1], σ ∈ R+. For example, if X has a Cauchy
distribution, KX has the same distribution.

Now consider K(E) = E1. On this subspace also condition (vi) holds
which implies that E1 is a smooth convex combination space.
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