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On the real X-ranks of points of Pn(R)

with respect to a real variety X ⊂ Pn

Abstract. Let X ⊂ Pn be an integral and non-degenerate m-dimensional
variety defined over R. For any P ∈ Pn(R) the real X-rank rX,R(P ) is the
minimal cardinality of S ⊂ X(R) such that P ∈ 〈S〉. Here we extend to the
real case an upper bound for the X-rank due to Landsberg and Teitler.

1. Introduction. Fix an integral and non-degenerate variety X ⊆ Pn de-
fined over C. For any P ∈ Pn(C) the X-rank rX(P ) of P is the minimal
cardinality of a finite set S ⊂ X(C) such that P ∈ 〈S〉, where 〈 〉 de-
note the linear span. Hence rX(P ) = 1 if and only if P ∈ X(C). Since
X is non-degenerate, the X-ranks are defined and rX(P ) ≤ n + 1 for all
P ∈ Pn(C). As a motivation for the study of X-ranks, see [1], [5], [7],
[9], [11] and references therein. Now assume that X is defined over R and
that the embedding X ⊂ Pn is defined over R, i.e. the scheme X is cut
out inside Pn by homogeneous polynomials with real coefficients. For any
P ∈ Pn(R) the real X-rank rX,R(P ) is the minimal cardinality of a finite
set S ⊂ X(R) such that P ∈ 〈S〉, with the convention rX,R(P ) = +∞ if
no such set exists. Notice that rX,R(P ) = +∞ if and only if P /∈ 〈X(R)〉.
Hence the function rX,R is integer-valued if and only if the set X(R) spans
Pn. Notice that if rX,R(P ) 	= +∞, then rX,R(P ) ≤ n + 1. Now assume
that the smooth quasi-projective variety Xreg has real points, i.e. assume
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Xreg(R) 	= ∅. Thus around P the set X(R) contains a smooth real algebraic
manifold of dimension m. Since X is irreducible, we get that Xreg(R) is
Zariski dense in X(C). Since X(C) spans Pn, 〈X(R)〉 = Pn if Xreg(R) 	= ∅.
If Xreg(R) = ∅, then X(R) is contained in a proper Zariski closed subset
Sing(X) of X. Quite often 〈Sing(X)〉 	= Pn even when Sing(X) 	= ∅. If X
is a reduced curve, then Xreg(R) 	= ∅ if and only if the set X(R) is infinite.
We prove the following extension of [11], Proposition 5.1, under the as-
sumption Xreg(R) 	= ∅.
Theorem 1. Let X ⊂ Pn be an integral and non-degenerate m-dimensional
variety defined over R. Set d := deg(X). Assume Xreg(R) 	= ∅. Then:
(i) rX,R(P ) ≤ n+ 2−m for all P ∈ Pn(R).
(ii) If d−m+1 ≡ n (mod 2), then rX,R(P ) ≤ n+1−m for all P ∈ Pn(R).

By [11], Proposition 5.1, we have rX(P ) ≤ n + 1 − m for all P ∈ Pn

and this bound is in general sharp. Moreover, the most important case in
which the upper bound rX(P ) = n+1−m is reached is defined over R, it is
smooth and with non-empty real locus: the rational normal curve of Pn ([8]
or [11], Theorem 4.1). Hence the bound in part (ii) of Theorem 1 cannot
be improved without making additional assumptions on the variety X. See
Example 1 for a case in which equality holds in part (i) of Theorem 1.
Our proof of Theorem 1 is just an adaptation of the proof of [11], Propo-
sition 5.1.
The interested reader may find related topics in [3] (definition of the X-

K-rank rX,K(P ) for an arbitrary field K and some computations of it when
X is a rational normal curve), and in [4], Proposition 3 (subsets of X(K)
computing the integer rX,K(P ) when X is a rational normal curve).

2. Proof of Theorem 1 and an example.

Lemma 1. Let X ⊂ P2 be an integral curve of even degree d defined over
R. Assume Xreg(R) 	= ∅. Then rX,R(P ) ≤ 2 for all P ∈ P2(R).

Proof. If P ∈ X(R), then rX,R(P ) = 1. Fix any P ∈ P2(R)\X(R). Since
we work in characteristic zero, X is not a strange curve ([10] Ex. IV.3.8).
Thus there is a non-empty open subset E of Xreg(C) such that P /∈ TQX
for all Q ∈ E. Since Xreg(R) 	= ∅, the set Xreg(R) is Zariski dense in X(C).
Hence there is Q ∈ E ∩ Xreg(R). Thus the line D := 〈{P,Q}〉 intersects
transversally X at Q. Since d is even, the line D must contain another point
of X(R). Thus rX,R(P ) ≤ 2. �

Proof of Theorem 1. The proof of the reduction of the case “m ≥ 2” to
the case “m = 1” is an easy adaption of the proof given by Landsberg and
Teitler over C. Only the case m = 1 gives a small surprise.
(a) Here we assume m = 1. If d − n is odd, then there is nothing to
prove, because Xreg(R) spans Pn. Hence we may assume d ≡ n (mod 2).
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We use induction on n. If n = 2, then apply Lemma 1. Now assume n ≥ 3.
Fix a general Q ∈ X(C). Hence X is smooth at Q. Thus the linear pro-
jection �Q : Pn\{Q} → Pn−1 induces a morphism vQ : X → Pn−1 such that
deg(vQ) · deg(vQ(X)) = d − 1. In characteristic zero a general secant line
of X is not a multisecant line. Hence for a general Q we have deg(vQ) = 1,
i.e., the curve vQ(X) is an integral and non-degenerate subcurve of Pn−1
with degree d − 1. Since Xreg(R) is Zariski dense in Xreg(R), this is true
also for almost all (except at most finitely many) points Q ∈ Xreg(R). Fix
Q ∈ Xreg(R) such that deg(vQ) = 1. Thus T := vQ(X) ⊂ Pn−1 is an integral
and non-degenerate curve defined over R and such that Treg(R) 	= ∅. Since
d−1 ≡ n−1 (mod 2), the inductive assumption gives rT,R(vQ(P )) ≤ n−1.
This is not sufficient to conclude that rX,R(P ) ≤ n, because vP (X)(R) may
be larger than vP (X(R)). However, we may adapt the proof of Lemma 1 in
the following way. Fix a general (Q1, . . . , Qn−2) ∈ X(C)(n−2). Hence X is
smooth at each Qi. Set U := 〈Q1, . . . , Qn−2〉. Since the points Q1, . . . , Qn−2
are general and X is non-degenerate, dim(U) = n − 3. Since we are in
characteristic zero, a general hyperplane section of X is in linearly general
position ([2], p. 109). Hence X ∩ U = {Q1, . . . , Qn−2} (scheme-theoretic
intersection). Since X(R) is Zariski dense in X(C), we may find Qi ∈ X(R)
with the same property. Let �U : Pn\U → P2 denote the linear projec-
tion from U . Since X ∩ U = {Q1, . . . , Qn−2} (scheme-theoretically) and
Qi ∈ Xreg for all i, the map �U |(X\X ∩ U) induces a birational mor-
phism vU : X → P2 such that deg(vU (X)) = d − n + 2 is even. The
morphism vU is defined over R. For a general Qn−1 ∈ X(R) the line
〈{vU (P ), vU (Qn−1)}〉 intersects transversally vU (X) at vU (Qn−1). Since
deg(vU (X)) is even, this line intersects vU (X) at another real point, P ′.
Since vU induces a real isomorphism between the normalizations of X and
of vU (X), the set vU (X)(R) \ vU (X(R) \ U) is finite. Thus for a general
Qn−1 we may assume that P ′ is in the image of a real point of X \U . Hence
rX,R(P ) ≤ n, concluding the proof in the case m = 1.
(b) Here we assume m ≥ 2 and that Theorem 1 is true for varieties of
dimension m− 1. Assume the existence of P ∈ Pn(R) such that rX,R(P ) ≥
n + 2 − m (case d − m + 1 ≡ 0 (mod 2)), or rX,R(P ) ≥ n + 1 − m (case
d −m + 1 ≡ 0 (mod 2)). If P ∈ X(R), then rX,R(P ) = 1. Hence we may
assume P /∈ X(R). Since X(R) = Pn(R) ∩X(C), we have P /∈ X(C). Let
AP (C) denote the set of all hyperplanes H ⊂ Pn(C) containing P . The set
AP is an (n − 1)-dimensional complex projective space. Since P ∈ Pn(R),
the variety AP (C) has a real structure such that the set AP (R) of its real
points parametrizes the set of all real hyperplanes containing P . Since
AP (R) is Zariski dense in AP (C), every non-empty Zariski open subset
of AP (C) intersects AP (R). Hence any non-empty open subset of AP (C)
defined over R has a real point. Moreover, for a general Q ∈ X(C) there
is H ∈ AP (C) such that Q ∈ H. Since Xreg(R) 	= ∅, we get the existence
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of H ∈ AP (R) containing a sufficiently general point of Xreg(R). Hence we
may find a sufficiently general H ∈ AP (R) with the additional condition
Xreg(R)∩H 	= ∅. Bertini’s theorem says that if H is general, then X ∩H is
an integral (m− 1)-dimensional variety and (X ∩H)reg = Xreg ∩H. Since
H ∈ AP (R), the variety X ∩ H is defined over R. Notice that rX,R(P ) ≤
rX∩H,R(P ). Since (X ∩H)reg(R) 	= ∅ and d−n+m ≡ d− (n− 1)+ (m− 1)
(mod 2), we may apply the inductive assumption to the variety X ∩H. �

The next example shows that the inequality in part (i) of Theorem 1 may
be an equality. Hence in part (ii) of Theorem 1 the parity condition cannot
be dropped without making other assumptions on X.

Example 1. Fix positive integers k, c such that k ≤ 2c and (2c+1, k) = 1.
Take homogeneous coordinates x, y, z of P2 and set X := {z2c+1−kyk =
x2c+1} and P := (1; 0; 0). Hence P /∈ X. Thus rX,R(P ) ≥ 2. The linear
projection from P sends any (x0; y0; z0) 	= (1; 0; 0), onto the point (y0; z0) ∈
P1. Since 2c + 1 is odd, the equation z2c+1−k

0 yk0 = t2c+1 has a unique real
root. Hence rX,R(P ) 	= 2. If k = c = 1, then the curve X is an integral plane
cubic with an ordinary cusp. Taking cones we get examples with arbitrary
m and n = m+ 1.

Fix a field K and an integral and non-degenerate subvariety X ⊂ Pn.
Assume that both X and the embedding X ↪→ Pn are defined over K. For
each P ∈ Pn(K) the X-K-rank rX,K(P ) of P is the minimal cardinality
of a set S ⊂ X(K) such that P ∈ 〈S〉 or +∞ if no such S exists, i.e. if
P /∈ 〈X(K)〉 ([3]). With this definition it is natural to analyze our proofs
for an arbitrary field K.

Remark 1. Our proofs work verbatim if instead of R we take a real closed
field K in the sense of [6], §1.2, and instead of C the algebraic closure K of
K. We recall that a field K is real closed if and only if −1 is not a sum of
squares of elements of K, each odd degree f ∈ K[t] has a root in K and for
each a ∈ K, either a or −a has a square root in K. If K is a real closed
field, then K ∼= K[t]/(t2 + 1) ([6], Theorem 1.2.2).

For curves our proofs give verbatim the following result.

Proposition 1. Fix a field K such that char(K) = 0 and an integral and
non-degenerate curve X ⊂ Pn. Assume that both X and the embedding
X ↪→ Pn are defined over K and that X(K) is infinite. Set d := deg(X).
Assume that every f ∈ K[t] of degree d−n+1 has a root in K, i.e. assume
the non-existence of a field extension K ⊂ L such that deg(L/K) = d−n+1.
Then rX,K(P ) ≤ n for all P ∈ Pn(K).

The “i.e.” part in Proposition 1 is true because every finite and separable
extension of fields has a primitive element ([12], Theorem VII.5.4 on p. 156).
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A small part of the inductive procedure in the proof of Theorem 1 works
verbatim for an arbitrary field K such that char(K) = 0. Indeed, for any
P ∈ Pn(K) the set of AP all hyperplanes of Pn(K) containing P is defined
over K and AP (K) is dense in AP (K). However, the curve section C in-
ductively obtained from X may have C(K) finite. For instance, take as K
a finite extension of Q and as X a smooth surface birational to P2 over K.
The set X(K) is Zariski dense in X(C). Quite often, X has sectional genus
at least 2. A theorem of Faltings (formerly Mordell’s conjecture) says that
C(K) is finite for any integral curve C defined over K whose normalization
has genus at least 2. We do not know a single field K (except the real closed
ones and the algebraically closed ones) in which many curve sections C of
a large class of varieties X have C(K) infinite.
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