EDOARDO BALLICO

On the real X-ranks of points of $\mathbb{P}^{n}(\mathbb{R})$ with respect to a real variety $X \subset \mathbb{P}^{n}$

Abstract

Let $X \subset \mathbb{P}^{n}$ be an integral and non-degenerate m-dimensional variety defined over \mathbb{R}. For any $P \in \mathbb{P}^{n}(\mathbb{R})$ the real X-rank $r_{X, \mathbb{R}}(P)$ is the minimal cardinality of $S \subset X(\mathbb{R})$ such that $P \in\langle S\rangle$. Here we extend to the real case an upper bound for the X-rank due to Landsberg and Teitler.

1. Introduction. Fix an integral and non-degenerate variety $X \subseteq \mathbb{P}^{n}$ defined over \mathbb{C}. For any $P \in \mathbb{P}^{n}(\mathbb{C})$ the X-rank $r_{X}(P)$ of P is the minimal cardinality of a finite set $S \subset X(\mathbb{C})$ such that $P \in\langle S\rangle$, where \rangle denote the linear span. Hence $r_{X}(P)=1$ if and only if $P \in X(\mathbb{C})$. Since X is non-degenerate, the X-ranks are defined and $r_{X}(P) \leq n+1$ for all $P \in \mathbb{P}^{n}(\mathbb{C})$. As a motivation for the study of X-ranks, see [1], [5], [7], [9], [11] and references therein. Now assume that X is defined over \mathbb{R} and that the embedding $X \subset \mathbb{P}^{n}$ is defined over \mathbb{R}, i.e. the scheme X is cut out inside \mathbb{P}^{n} by homogeneous polynomials with real coefficients. For any $P \in \mathbb{P}^{n}(\mathbb{R})$ the real X-rank $r_{X, \mathbb{R}}(P)$ is the minimal cardinality of a finite set $S \subset X(\mathbb{R})$ such that $P \in\langle S\rangle$, with the convention $r_{X, \mathbb{R}}(P)=+\infty$ if no such set exists. Notice that $r_{X, \mathbb{R}}(P)=+\infty$ if and only if $P \notin\langle X(\mathbb{R})\rangle$. Hence the function $r_{X, \mathbb{R}}$ is integer-valued if and only if the set $X(\mathbb{R})$ spans \mathbb{P}^{n}. Notice that if $r_{X, \mathbb{R}}(P) \neq+\infty$, then $r_{X, \mathbb{R}}(P) \leq n+1$. Now assume that the smooth quasi-projective variety $X_{\text {reg }}$ has real points, i.e. assume

[^0]$X_{\text {reg }}(\mathbb{R}) \neq \emptyset$. Thus around P the set $X(\mathbb{R})$ contains a smooth real algebraic manifold of dimension m. Since X is irreducible, we get that $X_{\text {reg }}(\mathbb{R})$ is Zariski dense in $X(\mathbb{C})$. Since $X(\mathbb{C})$ spans $\mathbb{P}^{n},\langle X(\mathbb{R})\rangle=\mathbb{P}^{n}$ if $X_{\text {reg }}(\mathbb{R}) \neq \emptyset$. If $X_{\text {reg }}(\mathbb{R})=\emptyset$, then $X(\mathbb{R})$ is contained in a proper Zariski closed subset $\operatorname{Sing}(X)$ of X. Quite often $\langle\operatorname{Sing}(X)\rangle \neq \mathbb{P}^{n}$ even when $\operatorname{Sing}(X) \neq \emptyset$. If X is a reduced curve, then $X_{\text {reg }}(\mathbb{R}) \neq \emptyset$ if and only if the set $X(\mathbb{R})$ is infinite.

We prove the following extension of [11], Proposition 5.1, under the assumption $X_{\text {reg }}(\mathbb{R}) \neq \emptyset$.

Theorem 1. Let $X \subset \mathbb{P}^{n}$ be an integral and non-degenerate m-dimensional variety defined over \mathbb{R}. Set $d:=\operatorname{deg}(X)$. Assume $X_{\text {reg }}(\mathbb{R}) \neq \emptyset$. Then:
(i) $r_{X, \mathbb{R}}(P) \leq n+2-m$ for all $P \in \mathbb{P}^{n}(\mathbb{R})$.
(ii) If $d-m+1 \equiv n(\bmod 2)$, then $r_{X, \mathbb{R}}(P) \leq n+1-m$ for all $P \in \mathbb{P}^{n}(\mathbb{R})$.

By [11], Proposition 5.1, we have $r_{X}(P) \leq n+1-m$ for all $P \in \mathbb{P}^{n}$ and this bound is in general sharp. Moreover, the most important case in which the upper bound $r_{X}(P)=n+1-m$ is reached is defined over \mathbb{R}, it is smooth and with non-empty real locus: the rational normal curve of \mathbb{P}^{n} ([8] or [11], Theorem 4.1). Hence the bound in part (ii) of Theorem 1 cannot be improved without making additional assumptions on the variety X. See Example 1 for a case in which equality holds in part (i) of Theorem 1.

Our proof of Theorem 1 is just an adaptation of the proof of [11], Proposition 5.1.

The interested reader may find related topics in [3] (definition of the X -K-rank $r_{X, K}(P)$ for an arbitrary field K and some computations of it when X is a rational normal curve), and in [4], Proposition 3 (subsets of $X(K)$ computing the integer $r_{X, K}(P)$ when X is a rational normal curve).

2. Proof of Theorem 1 and an example.

Lemma 1. Let $X \subset \mathbb{P}^{2}$ be an integral curve of even degree d defined over \mathbb{R}. Assume $X_{\text {reg }}(\mathbb{R}) \neq \emptyset$. Then $r_{X, \mathbb{R}}(P) \leq 2$ for all $P \in \mathbb{P}^{2}(\mathbb{R})$.

Proof. If $P \in X(\mathbb{R})$, then $r_{X, \mathbb{R}}(P)=1$. Fix any $P \in \mathbb{P}^{2}(\mathbb{R}) \backslash X(\mathbb{R})$. Since we work in characteristic zero, X is not a strange curve ($[10]$ Ex. IV.3.8). Thus there is a non-empty open subset E of $X_{\text {reg }}(\mathbb{C})$ such that $P \notin T_{Q} X$ for all $Q \in E$. Since $X_{\text {reg }}(\mathbb{R}) \neq \emptyset$, the set $X_{\text {reg }}(\mathbb{R})$ is Zariski dense in $X(\mathbb{C})$. Hence there is $Q \in E \cap X_{\text {reg }}(\mathbb{R})$. Thus the line $D:=\langle\{P, Q\}\rangle$ intersects transversally X at Q. Since d is even, the line D must contain another point of $X(\mathbb{R})$. Thus $r_{X, \mathbb{R}}(P) \leq 2$.

Proof of Theorem 1. The proof of the reduction of the case " $m \geq 2$ " to the case " $m=1$ " is an easy adaption of the proof given by Landsberg and Teitler over \mathbb{C}. Only the case $m=1$ gives a small surprise.
(a) Here we assume $m=1$. If $d-n$ is odd, then there is nothing to prove, because $X_{\text {reg }}(\mathbb{R})$ spans \mathbb{P}^{n}. Hence we may assume $d \equiv n(\bmod 2)$.

We use induction on n. If $n=2$, then apply Lemma 1 . Now assume $n \geq 3$. Fix a general $Q \in X(\mathbb{C})$. Hence X is smooth at Q. Thus the linear projection $\ell_{Q}: \mathbb{P}^{n} \backslash\{Q\} \rightarrow \mathbb{P}^{n-1}$ induces a morphism $v_{Q}: X \rightarrow \mathbb{P}^{n-1}$ such that $\operatorname{deg}\left(v_{Q}\right) \cdot \operatorname{deg}\left(v_{Q}(X)\right)=d-1$. In characteristic zero a general secant line of X is not a multisecant line. Hence for a general Q we have $\operatorname{deg}\left(v_{Q}\right)=1$, i.e., the curve $v_{Q}(X)$ is an integral and non-degenerate subcurve of \mathbb{P}^{n-1} with degree $d-1$. Since $X_{\text {reg }}(\mathbb{R})$ is Zariski dense in $X_{\text {reg }}(\mathbb{R})$, this is true also for almost all (except at most finitely many) points $Q \in X_{\text {reg }}(\mathbb{R})$. Fix $Q \in X_{\text {reg }}(\mathbb{R})$ such that $\operatorname{deg}\left(v_{Q}\right)=1$. Thus $T:=v_{Q}(X) \subset \mathbb{P}^{n-1}$ is an integral and non-degenerate curve defined over \mathbb{R} and such that $T_{\text {reg }}(\mathbb{R}) \neq \emptyset$. Since $d-1 \equiv n-1(\bmod 2)$, the inductive assumption gives $r_{T, \mathbb{R}}\left(v_{Q}(P)\right) \leq n-1$. This is not sufficient to conclude that $r_{X, \mathbb{R}}(P) \leq n$, because $v_{P}(X)(\mathbb{R})$ may be larger than $v_{P}(X(\mathbb{R}))$. However, we may adapt the proof of Lemma 1 in the following way. Fix a general $\left(Q_{1}, \ldots, Q_{n-2}\right) \in X(\mathbb{C})^{(n-2)}$. Hence X is smooth at each Q_{i}. Set $U:=\left\langle Q_{1}, \ldots, Q_{n-2}\right\rangle$. Since the points Q_{1}, \ldots, Q_{n-2} are general and X is non-degenerate, $\operatorname{dim}(U)=n-3$. Since we are in characteristic zero, a general hyperplane section of X is in linearly general position ([2], p. 109). Hence $X \cap U=\left\{Q_{1}, \ldots, Q_{n-2}\right\}$ (scheme-theoretic intersection). Since $X(\mathbb{R})$ is Zariski dense in $X(\mathbb{C})$, we may find $Q_{i} \in X(\mathbb{R})$ with the same property. Let $\ell_{U}: \mathbb{P}^{n} \backslash U \rightarrow \mathbb{P}^{2}$ denote the linear projection from U. Since $X \cap U=\left\{Q_{1}, \ldots, Q_{n-2}\right\}$ (scheme-theoretically) and $Q_{i} \in X_{\text {reg }}$ for all i, the map $\ell_{U} \mid(X \backslash X \cap U)$ induces a birational morphism $v_{U}: X \rightarrow \mathbb{P}^{2}$ such that $\operatorname{deg}\left(v_{U}(X)\right)=d-n+2$ is even. The morphism v_{U} is defined over \mathbb{R}. For a general $Q_{n-1} \in X(\mathbb{R})$ the line $\left\langle\left\{v_{U}(P), v_{U}\left(Q_{n-1}\right)\right\}\right\rangle$ intersects transversally $v_{U}(X)$ at $v_{U}\left(Q_{n-1}\right)$. Since $\operatorname{deg}\left(v_{U}(X)\right)$ is even, this line intersects $v_{U}(X)$ at another real point, P^{\prime}. Since v_{U} induces a real isomorphism between the normalizations of X and of $v_{U}(X)$, the set $v_{U}(X)(\mathbb{R}) \backslash v_{U}(X(\mathbb{R}) \backslash U)$ is finite. Thus for a general Q_{n-1} we may assume that P^{\prime} is in the image of a real point of $X \backslash U$. Hence $r_{X, \mathbb{R}}(P) \leq n$, concluding the proof in the case $m=1$.
(b) Here we assume $m \geq 2$ and that Theorem 1 is true for varieties of dimension $m-1$. Assume the existence of $P \in \mathbb{P}^{n}(\mathbb{R})$ such that $r_{X, \mathbb{R}}(P) \geq$ $n+2-m($ case $d-m+1 \equiv 0(\bmod 2))$, or $r_{X, \mathbb{R}}(P) \geq n+1-m($ case $d-m+1 \equiv 0(\bmod 2)$). If $P \in X(\mathbb{R})$, then $r_{X, \mathbb{R}}(P)=1$. Hence we may assume $P \notin X(\mathbb{R})$. Since $X(\mathbb{R})=\mathbb{P}^{n}(\mathbb{R}) \cap X(\mathbb{C})$, we have $P \notin X(\mathbb{C})$. Let $A_{P}(\mathbb{C})$ denote the set of all hyperplanes $H \subset \mathbb{P}^{n}(\mathbb{C})$ containing P. The set A_{P} is an $(n-1)$-dimensional complex projective space. Since $P \in \mathbb{P}^{n}(\mathbb{R})$, the variety $A_{P}(\mathbb{C})$ has a real structure such that the set $A_{P}(\mathbb{R})$ of its real points parametrizes the set of all real hyperplanes containing P. Since $A_{P}(\mathbb{R})$ is Zariski dense in $A_{P}(\mathbb{C})$, every non-empty Zariski open subset of $A_{P}(\mathbb{C})$ intersects $A_{P}(\mathbb{R})$. Hence any non-empty open subset of $A_{P}(\mathbb{C})$ defined over \mathbb{R} has a real point. Moreover, for a general $Q \in X(\mathbb{C})$ there is $H \in A_{P}(\mathbb{C})$ such that $Q \in H$. Since $X_{\text {reg }}(\mathbb{R}) \neq \emptyset$, we get the existence
of $H \in A_{P}(\mathbb{R})$ containing a sufficiently general point of $X_{\text {reg }}(\mathbb{R})$. Hence we may find a sufficiently general $H \in A_{P}(\mathbb{R})$ with the additional condition $X_{\text {reg }}(\mathbb{R}) \cap H \neq \emptyset$. Bertini's theorem says that if H is general, then $X \cap H$ is an integral $(m-1)$-dimensional variety and $(X \cap H)_{\text {reg }}=X_{\text {reg }} \cap H$. Since $H \in A_{P}(\mathbb{R})$, the variety $X \cap H$ is defined over \mathbb{R}. Notice that $r_{X, \mathbb{R}}(P) \leq$ $r_{X \cap H, \mathbb{R}}(P)$. Since $(X \cap H)_{\text {reg }}(\mathbb{R}) \neq \emptyset$ and $d-n+m \equiv d-(n-1)+(m-1)$ $(\bmod 2)$, we may apply the inductive assumption to the variety $X \cap H$.

The next example shows that the inequality in part (i) of Theorem 1 may be an equality. Hence in part (ii) of Theorem 1 the parity condition cannot be dropped without making other assumptions on X.

Example 1. Fix positive integers k, c such that $k \leq 2 c$ and $(2 c+1, k)=1$. Take homogeneous coordinates x, y, z of \mathbb{P}^{2} and set $X:=\left\{z^{2 c+1-k} y^{k}=\right.$ $\left.x^{2 c+1}\right\}$ and $P:=(1 ; 0 ; 0)$. Hence $P \notin X$. Thus $r_{X, \mathbb{R}}(P) \geq 2$. The linear projection from P sends any $\left(x_{0} ; y_{0} ; z_{0}\right) \neq(1 ; 0 ; 0)$, onto the point $\left(y_{0} ; z_{0}\right) \in$ \mathbb{P}^{1}. Since $2 c+1$ is odd, the equation $z_{0}^{2 c+1-k} y_{0}^{k}=t^{2 c+1}$ has a unique real root. Hence $r_{X, \mathbb{R}}(P) \neq 2$. If $k=c=1$, then the curve X is an integral plane cubic with an ordinary cusp. Taking cones we get examples with arbitrary m and $n=m+1$.

Fix a field K and an integral and non-degenerate subvariety $X \subset \mathbb{P}^{n}$. Assume that both X and the embedding $X \hookrightarrow \mathbb{P}^{n}$ are defined over K. For each $P \in \mathbb{P}^{n}(K)$ the X - K-rank $r_{X, K}(P)$ of P is the minimal cardinality of a set $S \subset X(K)$ such that $P \in\langle S\rangle$ or $+\infty$ if no such S exists, i.e. if $P \notin\langle X(K)\rangle([3])$. With this definition it is natural to analyze our proofs for an arbitrary field K.

Remark 1. Our proofs work verbatim if instead of \mathbb{R} we take a real closed field K in the sense of $[6], \S 1.2$, and instead of \mathbb{C} the algebraic closure \bar{K} of K. We recall that a field K is real closed if and only if -1 is not a sum of squares of elements of K, each odd degree $f \in K[t]$ has a root in K and for each $a \in K$, either a or $-a$ has a square root in K. If K is a real closed field, then $\bar{K} \cong K[t] /\left(t^{2}+1\right)$ ($[6]$, Theorem 1.2.2).

For curves our proofs give verbatim the following result.
Proposition 1. Fix a field K such that $\operatorname{char}(K)=0$ and an integral and non-degenerate curve $X \subset \mathbb{P}^{n}$. Assume that both X and the embedding $X \hookrightarrow \mathbb{P}^{n}$ are defined over K and that $X(K)$ is infinite. Set $d:=\operatorname{deg}(X)$. Assume that every $f \in K[t]$ of degree $d-n+1$ has a root in K, i.e. assume the non-existence of a field extension $K \subset L$ such that $\operatorname{deg}(L / K)=d-n+1$. Then $r_{X, K}(P) \leq n$ for all $P \in \mathbb{P}^{n}(K)$.

The "i.e." part in Proposition 1 is true because every finite and separable extension of fields has a primitive element ([12], Theorem VII.5.4 on p. 156).

A small part of the inductive procedure in the proof of Theorem 1 works verbatim for an arbitrary field K such that $\operatorname{char}(K)=0$. Indeed, for any $P \in \mathbb{P}^{n}(K)$ the set of A_{P} all hyperplanes of $\mathbb{P}^{n}(\bar{K})$ containing P is defined over K and $A_{P}(K)$ is dense in $A_{P}(\bar{K})$. However, the curve section C inductively obtained from X may have $C(K)$ finite. For instance, take as K a finite extension of \mathbb{Q} and as X a smooth surface birational to \mathbb{P}^{2} over K. The set $X(K)$ is Zariski dense in $X(\mathbb{C})$. Quite often, X has sectional genus at least 2. A theorem of Faltings (formerly Mordell's conjecture) says that $C(K)$ is finite for any integral curve C defined over K whose normalization has genus at least 2. We do not know a single field K (except the real closed ones and the algebraically closed ones) in which many curve sections C of a large class of varieties X have $C(K)$ infinite.

References

[1] Albera, L., Chevalier, P., Comon, P. and Ferreol, A., On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53(4) (2005), 1254-1271.
[2] Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves. I, Springer-Verlag, New York, 1985.
[3] Ballico, E., Ranks of subvarieties of \mathbb{P}^{n} over non-algebraically closed fields, Int. J. Pure Appl. Math. 61(1) (2010), 7-10.
[4] Ballico, E., Subsets of the variety $X \subset \mathbb{P}^{n}$ computing the X-rank of a point of \mathbb{P}^{n}, preprint.
[5] Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34-55.
[6] Bochnak, J., Coste, M. and Roy, F.-M., Real Algebraic Geometry, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, SpringerVerlag, Berlin, 1998.
[7] Buczyński, J., Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, arXiv:0909.4262v1 [math.AG].
[8] Comas, G., Seiguer, M., On the rank of a binary form, arXiv:math.AG/0112311.
[9] Comon, P., Golub, G., Lim, L.-H. and Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30(3) (2008), 1254-1279.
[10] Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
[11] Landsberg, J. M., Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339-366.
[12] Lang, S., Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.
E. Ballico

Department of Mathematics
University of Trento
38123 Povo (TN)
Italy
e-mail: ballico@science.unitn.it
Received January 8, 2010

[^0]: 2000 Mathematics Subject Classification. 14N05, 14H50.
 Key words and phrases. Ranks, real variety, structured rank.
 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

