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Inclusion properties of certain subclasses
of analytic functions defined by
generalized Sălăgean operator

Abstract. Let A denote the class of analytic functions with the normaliza-
tion f(0) = f ′(0)− 1 = 0 in the open unit disc U = {z : |z| < 1}. Set

fn
λ (z) = z +

∞∑

k=2

[1 + λ(k − 1)]nzk (n ∈ N0; λ ≥ 0; z ∈ U),

and define fn
λ,μ in terms of the Hadamard product

fn
λ (z) ∗ fn

λ,μ =
z

(1− z)μ
(μ > 0; z ∈ U).

In this paper, we introduce several subclasses of analytic functions defined by
means of the operator Inλ,μ : A −→ A, given by

Inλ,μf(z) = fn
λ,μ(z) ∗ f(z) (f ∈ A; n ∈ N0; λ ≥ 0; μ > 0).

Inclusion properties of these classes and the classes involving the generalized
Libera integral operator are also considered.

1. Introduction. Let A denote the class of functions of the form:

(1.1) f(z) = z +

∞∑
k=2

akz
k,
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which are analytic in the open unit disc U = {z : |z| < 1}. If f and g
are analytic in U , we say that f is subordinate to g, written f ≺ g or
f(z) ≺ g(z), if there exists a Schwarz function w(z), which (by definition)
is analytic in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such that
f(z) = g(w(z)), z ∈ U . For 0 ≤ η < 1, we denote by S∗(η), K(η) and C the
subclasses of A consisting of all analytic functions which are, respectively,
starlike of order η, convex of order η and close-to-convex of order η in U
(see, e.g., Srivastava and Owa [11]).
For n ∈ N0 = N ∪{0}, where N = {1, 2, . . . }, λ ≥ 0 and f given by (1.1),
we consider the generalized Sălăgean operator defined as follows:

(1.2) Dn
λf(z) = z +

∞∑
k=2

[1 + λ(k − 1)]nakz
k (z ∈ U) .

The operator Dn
λ was introduced and studied by Al-Oboudi [1] which re-

duces to the Sălăgean differential operator [10] for λ = 1.
Let S be the class of all functions φ which are analytic and univalent in

U and for which φ(U) is convex with φ(0) = 1 and Re{φ(z)} > 0 (z ∈ U).
The Hadamard product (or convolution) f ∗ g of two analytic functions
f (z) =

∑∞
k=0 akz

k and g (z) =
∑∞

k=0 bkz
k is given by

(f ∗ g) (z) =
∞∑
k=0

akbkz
k.

Making use of the principle of subordination between analytic functions,
we introduce the subclasses S∗(η;φ), K(η;φ) and C(η, δ;φ, ψ) of the class
A for 0 ≤ η, δ < 1 and φ, ψ ∈ S (cf., [3], [5] and [7] ), which are defined by

S∗(η;φ) =
{
f ∈ A :

1

1− η

(
zf ′ (z)
f (z)

− η

)
≺ φ (z) (z ∈ U)

}
,

K(η; Φ) =

{
f ∈ A :

1

1− η

(
1 +

zf ′′ (z)
f ′ (z)

− η

)
≺ φ (z) (z ∈ U)

}
and

C(η, δ;φ, ψ) =

{
f ∈ A : ∃g ∈ S∗(η;φ) s. t.

1

1− δ

(
zf ′ (z)
g (z)

− δ

)
≺ ψ (z)

(z ∈ U)

}
.

We note that, for special choices for the functions φ and ψ involved in
these definitions, we can obtain the well-known subclasses of A. For exam-
ple, we have

S∗
(
η;

1 + z

1− z

)
= S∗(η), K

(
η;

1 + z

1− z

)
= K(η)
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and

C

(
0, 0;

1 + z

1− z
,
1 + z

1− z

)
= C.

Setting

fn
λ (z) = z +

∞∑
k=2

[1 + λ (k − 1)]nzk (n ∈ N0; λ ≥ 0) ,

we define the function fn
λ,μ in terms of the Hadamard product by

(1.3) fn
λ (z) ∗ fn

λ,μ (z) =
z

(1− z)μ
(μ > 0; z ∈ U) .

We now introduce the operator Inλ,μ : A −→ A, which is defined here by

(1.4)
Inλ,μf(z) = fn

λ,μ (z) ∗ f(z) = z +

∞∑
k=2

(μ)k−1

(k−1)![1+λ(k−1)]nakz
k

(f ∈ A; n ∈ N0; λ ≥ 0; μ > 0),

where (θ)k is the Pochhammer symbol defined, in terms of the Gamma
function 
, by

(θ)k =

(θ + k)


(θ) =

{
1 (k = 0, θ ∈ C\{0}),
θ (θ + 1) . . . (θ + k − 1) (k ∈ N, θ ∈ C).

We note that I11,2f(z) = f(z) and I00,2f(z) = zf ′(z).
From (1.4), we obtain the following relations:

(1.5) λz(In+1
λ,μ f(z))′ = Inλ,μf(z)− (1− λ)In+1

λ,μ f(z) (λ > 0)

and

(1.6) z(Inλ,μf(z))
′ = μInλ,μ+1f(z)− (μ− 1)Inλ,μf(z).

Next, by using the operator Inλ,μ, we introduce the following classes of
analytic functions for φ, ψ:

Sn
λ,μ (η;φ) =

{
f ∈ A : Inλ,μf(z) ∈ S∗ (η;φ)

}
,

Kn
λ,μ (η;φ) =

{
f ∈ A : Inλ,μf(z) ∈ K (η;φ)

}
and

Cn
λ,μ(η, δ;φ, ψ) =

{
f ∈ A : Inλ,μf(z) ∈ C (η, δ;φ, ψ)

}
.

We also note that

(1.7) f(z) ∈ Kn
λ,μ(η;φ)⇐⇒ zf ′(z) ∈ Sn

λ,μ (η;φ) .

In particular, we set

Sn
λ,μ

(
η;

(
1 +Az

1 +Bz

)α)
= Sn

λ,μ(η;A,B;α) (0 < α ≤ 1; −1 ≤ B < A ≤ 1)
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and

Kn
λ,μ

(
η;

(
1 +Az

1 +Bz

)α)
= Kn

λ,μ(η;A,B;α) (0 < α ≤ 1; −1 ≤ B < A ≤ 1).

We note that for λ = 1 in the above classes, we obtain the following
classes Sn

μ (η;φ), Kn
μ (η;φ) and Cn

μ (η, δ;φ, ψ).
In this paper, we investigate several inclusion properties of the classes

Sn
λ,μ (η;φ), K

n
λ,μ (η;φ) and C

n
λ,μ(η, δ;φ, ψ) associated with the operator I

n
λ,μ.

Some applications involving these and other classes of integral operators are
also considered.

2. Inclusion properties involving the operator I
n

λ,μ. The following
lemmas will be required in our investigation.

Lemma 1 ([4]). Let φ be convex univalent in U with φ(0) = 1 and
Re{μφ(z) + ν} > 0 (μ, ν ∈ C). If p is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

μp(z) + ν
≺ φ(z) (z ∈ U)

implies that
p(z) ≺ φ(z) (z ∈ U).

Lemma 2 ([8]). Let φ be convex univalent in U and w be analytic in U
with Re{w(z)} ≥ 0. If p is analytic in U and p(0) = φ(0), then

p(z) + w(z)zp′(z) ≺ φ(z) (z ∈ U)

implies that
p(z) ≺ φ(z) (z ∈ U).

At first, with the help of Lemma 1, we obtain the following theorem.

Theorem 1. Let n ∈ N0, λ > 0, μ ≥ 1 and Re{(1−η)φ(z)+ 1
λ−1+η} > 0.

Then we have

Sn
λ,μ+1 (η;φ) ⊂ Sn

λ,μ (η;φ) ⊂ Sn+1
λ,μ (η;φ)

( 0 ≤ η < 1; φ ∈ S).

Proof. First of all, we will show that

Sn
λ,μ+1 (η;φ) ⊂ Sn

λ,μ (η;φ) .

Let f ∈ Sn
λ,μ+1 (η;φ) and put

(2.1) p(z) =
1

1− η

⎛
⎜⎝z

(
Inλ,μf(z)

)′

Inλ,μf(z)
− η

⎞
⎟⎠ ,
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where p(z) is analytic in U with p(0) = 1. Using the identity (1.6) in (2.1),
we obtain

(2.2) μ
Inλ,μ+1f(z)

Inλ,μf(z)
= (1− η)p(z) + μ− 1 + η.

Differentiating (2.2) logarithmically with respect to z and multiplying by z,
we obtain

(2.3)
1

1− η

⎛
⎜⎝z

(
Inλ,μ+1f(z)

)′

Inλ,μ+1f(z)
− η

⎞
⎟⎠ = p(z) +

zp′(z)
(1− η)p(z) + μ− 1 + η

(z ∈ U). Applying Lemma 1 to (2.3), we see that p(z) ≺ φ(z), that is,
f ∈ Sn

λ,μ (η;φ).
To prove the second part, let f ∈ Sn

λ,μ (η;φ) and put

h(z) =
1

1− η

⎛
⎜⎝z

(
In+1
λ,μ f(z)

)′

In+1
λ,μ f(z)

− η

⎞
⎟⎠ ,

where h is analytic in U with h(0) = 1. Then, by using the arguments similar
to these detailed above with (1.5), it follows that h ≺ φ (z ∈ U), which
implies that f ∈ Sn+1

λ,μ (η;φ). This completes the proof of Theorem 1. �
Theorem 2. Let n ∈ N0, λ > 0 and μ ≥ 1. Then we have

Kn
λ,μ+1 (η;φ) ⊂ Kn

λ,μ (η;φ) ⊂ Kn+1
λ,μ (η;φ)

( 0 ≤ η < 1; φ ∈ S).

Proof. Applying (1.7) and Theorem 1, we observe that

f(z) ∈ Kn
λ,μ+1 (η;φ) ⇐⇒ Inλ,μ+1f(z) ∈ K (η;φ)

⇐⇒ z(Inλ,μ+1f(z))
′ ∈ S∗ (η;φ)

⇐⇒ Inλ,μ+1 (zf
′(z)) ∈ S∗ (η;φ)

⇐⇒ zf ′(z) ∈ Sn
λ,μ+1 (η;φ)

=⇒ zf ′(z) ∈ Sn
λ,μ (η;φ)

⇐⇒ Inλ,μ (zf
′(z)) ∈ S∗ (η;φ)

⇐⇒ z(Inλ,μf(z))
′ ∈ S∗ (η;φ)

⇐⇒ Inλ,μf(z) ∈ K(η;φ)

⇐⇒ f(z) ∈ Kn
λ,μ(η;φ)

and
f(z) ∈ Kn

λ,μ (η;φ) ⇐⇒ zf ′(z) ∈ Sn
λ,μ (η;φ)

=⇒ zf ′(z) ∈ Sn+1
λ,μ (η;φ)

⇐⇒ z(In+1
λ,μ f(z))′ ∈ S∗ (η;φ)

⇐⇒ In+1
λ,μ f(z) ∈ K (η;φ)

⇐⇒ f(z) ∈ Kn+1
λ,μ (η;φ),



22 M. K. Aouf, A. Shamandy, A. O. Mostafa and S. M. Madian

which evidently proves the theorem. �

Remark. Taking

φ(z) =

(
1 +Az

1 +Bz

)α

(−1 ≤ B < A ≤ 1; 0 < α ≤ 1; z ∈ U)

in Theorems 1 and 2, we have the following corollary.

Corollary 1. Let n ∈ N0, λ > 0 and μ ≥ 1. Then we have

Sn
λ,μ+1 (η; A,B; α) ⊂ Sn

λ,μ (η; A,B; α) ⊂ Sn+1
λ,μ (η; A,B; α)

( 0 ≤ η < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1), and

Kn
λ,μ+1 (η; A,B; α) ⊂ Kn

λ,μ (η; A,B; α) ⊂ Kn+1
λ,μ (η; A,B; α)

( 0 ≤ η < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1).

Next, by using Lemma 2, we obtain the following inclusion relation for
the class Cn

λ,μ(η, δ;φ, ψ).

Theorem 3. Let n ∈ N0, λ > 0 and μ ≥ 1. Then we have

Cn
λ,μ+1(η, δ;φ, ψ) ⊂ Cn

λ,μ(η, δ;φ, ψ) ⊂ Cn+1
λ,μ (η, δ;φ, ψ)

( 0 ≤ η, δ < 1; φ, ψ ∈ S).

Proof. We begin by proving that

Cn
λ,μ+1(η, δ;φ, ψ) ⊂ Cn

λ,μ(η, δ;φ, ψ).

Let f ∈ Cn
λ,μ+1(η, δ;φ, ψ). Then, in view of the definition of the class

Cn
λ,μ+1(η, δ;φ, ψ), there exists a function g ∈ Sn

λ,μ+1 (η;φ) such that

1

1− δ

⎛
⎜⎝z

(
Inλ,μ+1f(z)

)′

Inλ,μ+1g(z)
− δ

⎞
⎟⎠ ≺ ψ(z) (z ∈ U).

Now let

p(z) =
1

1− δ

⎛
⎜⎝z

(
Inλ,μf(z)

)′

Inλ,μg(z)
− δ

⎞
⎟⎠ ,

where p(z) is analytic in U with p(0) = 1. Using (1.6), we have

(2.4) [(1− δ)p(z) + δ]Inλ,μg(z) + (μ− 1)Inλ,μf(z) = μInλ,μ+1f(z).

Differentiating (2.4) with respect to z and multiplying by z, we obtain

(2.5)
(1− δ)zp′(z)Inλ,μg(z) + [(1− δ)p(z) + δ]z(Inλ,μg(z))

′

= μz(Inλ,μ+1f(z))
′ − (μ− 1) z(Inλ,μf(z))

′.
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Since g(z) ∈ Sn
λ,μ+1(η;φ), by Theorem 1, g ∈ Sn

λ,μ(η;φ). Let

q(z) =
1

1− η

⎛
⎜⎝z

(
Inλ,μg(z)

)′

Inλ,μg(z)
− η

⎞
⎟⎠ .

Then, using (1.6) once again, we have

(2.6) μ
Inλ,μ+1g(z)

Inλ,μg(z)
= (1− η)q(z) + μ− 1 + η.

From (2.5) and (2.6), we obtain

1

1− δ

⎛
⎜⎝z

(
Inλ,μ+1f(z)

)′

Inλ,μ+1g(z)
− δ

⎞
⎟⎠ = p(z) +

zp′(z)
(1− η) q(z) + μ− 1 + η

.

Since 0 ≤ η < 1, μ ≥ 1 and q(z) ≺ φ(z) (z ∈ U), we have

Re{(1− η)q(z) + μ− 1 + η} > 0 (z ∈ U).

Hence, applying Lemma 2, we can show that p(z) ≺ ψ(z), so that f ∈
Cn
λ,μ(η, δ;φ, ψ).
For the second part, by using the arguments similar to these detailed
above with (1.5), we obtain

Cn
λ,μ(η, δ;φ, ψ) ⊂ Cn+1

λ,μ (η, δ;φ, ψ).

This completes the proof of Theorem 3. �

3. Inclusion properties involving the integral operator Fc. In this
section, we consider the generalized Libera integral operator Fc (see [2], [6]
and [9]) defined by

(3.1) Fc(f) = Fc(f)(z) =
c+ 1

zc

z∫
0

tc−1f(t)dt (f ∈ A; c > −1).

We first prove the following theorem.

Theorem 4. Let c ≥ 0, n ∈ N0, λ > 0 and μ > 0. If f ∈ Sn
λ,μ(η;φ)

( 0 ≤ η < 1; φ ∈ S), then we have Fc(f) ∈ Sn
λ,μ(η;φ) ( 0 ≤ η < 1; φ ∈ S).

Proof. Let f ∈ Sn
λ,μ(η;φ) and put

(3.2) p(z) =
1

1− η

⎛
⎜⎝z

(
Inλ,μFc (f) (z)

)′

Inλ,μFc (f) (z)
− η

⎞
⎟⎠ ,
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where p(z) is analytic in U with p(0) = 1. From (3.1), we have

(3.3) z(Inλ,μFc (f) (z))
′ = (c+ 1)Inλ,μf(z)− cInλ,μFc (f) (z).

Then, by using (3.2) and (3.3), we have

(3.4) (c+ 1)
Inλ,μf(z)

Inλ,μFc (f) (z)
= (1− η)p(z) + c+ η.

Differentiating (3.4) logarithmically with respect to z and multiplying by z,
we obtain

p(z) +
zp′(z)

(1− η)p(z) + c+ η
=

1

1− η

(
z(Inλ,μf(z))

′

Inλ,μf(z)
− η

)
(z ∈ U).

Hence from Lemma 1, we conclude that p(z) ≺ φ(z) (z ∈ U), which implies
Fc (f) ∈ Sn

λ,μ(η;φ). �

Next, we derive an inclusion property involving Fc, which is given by the
following theorem.

Theorem 5. Let c ≥ 0, λ > 0, n ∈ N0 and μ > 0. If f ∈ Kn
λ,μ (η;φ)

( 0 ≤ η < 1; φ ∈ S), then we have

Fc (f) ∈ Kn
λ,μ (η;φ) ( 0 ≤ η < 1; φ ∈ S).

Proof. By applying Theorem 4, we have

f(z) ∈ Kn
λ,μ (η;φ) ⇐⇒ zf ′(z) ∈ Sn

λ,μ (η;φ)

=⇒ Fc (zf
′(z)) ∈ Sn

λ,μ (η;φ)

⇐⇒ z(Fc(f)(z))
′ ∈ Sn

λ,μ (η;φ)

⇐⇒ Fc(f)(z) ∈ Kn
λ,μ (η;φ)

which proves Theorem 5. �

From Theorems 4 and 5, we have the following corollary.

Corollary 2. Let c ≥ 0, λ > 0, n ∈ N0 and μ > 0. If f(z) belongs to
the class Sn

λ,μ (η;A,B;α) (or Kn
λ,μ (η;A,B;α)) ( 0 ≤ η < 1; −1 ≤ B <

A ≤ 1; 0 < α ≤ 1), then Fc(f) belongs to the class Sn
λ,μ (η;A,B;α) (or

Kn
λ,μ (η;A,B;α)) ( 0 ≤ η < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1).

Finally, we prove the following theorem.

Theorem 6. Let c ≥ 0, λ > 0, n ∈ N0 and μ > 0. If f ∈ Cn
λ,μ(η, δ;φ, ψ)

( 0 ≤ η, δ < 1; φ, ψ ∈ S), then we have Fc(f) ∈ Cn
λ,μ(η, δ;φ, ψ) ( 0 ≤ η,

δ < 1; φ, ψ ∈ S).
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Proof. Let f ∈ Cn
λ,μ(η, δ;φ, ψ). Then, in view of the definition of the class

Cn
λ,μ(η, δ;φ, ψ), there exists a function g ∈ Sn

λ,μ (η;φ) such that

(3.5)
1

1− δ

(
z(Inλ,μf(z))

′

Inλ,μg(z)
− δ

)
≺ ψ (z) (z ∈ U).

Thus, we put

p(z) =
1

1− δ

⎛
⎜⎝z

(
Inλ,μFc (f) (z)

)′

Inλ,μFc (g) (z)
− δ

⎞
⎟⎠ ,

where p(z) is analytic in U with p(0) = 1. Since g(z) ∈ Sn
λ,μ (η;φ), we see

from Theorem 4 that Fc (g) ∈ Sn
λ,μ (η;φ). Using (3.3), we have

(3.6) [(1− δ)p(z) + δ]Inλ,μFc (g) (z) + cInλ,μFc (f) (z) = (c+ 1)Inλ,μf(z).

Differentiating (3.6) with respect to z and multiplying by z, we obtain

(c+ 1)
z(Inλ,μf(z))

′

Inλ,μFc (g) (z)
= [(1− δ)p(z) + δ][(1− η)q(z) + c+ η] + (1− δ)zp′(z),

where

q(z) =
1

1− η

⎛
⎜⎝z

(
Inλ,μFc (g) (z)

)′

Inλ,μFc (g) (z)
− η

⎞
⎟⎠ .

Hence, we have

1

1− δ

⎛
⎜⎝z

(
Inλ,μf(z)

)′

Inλ,μg(z)
− δ

⎞
⎟⎠ = p(z) +

zp′(z)
(1− η)q(z) + c+ η

.

The remaining part of the proof in Theorem 6 is similar to that of The-
orem 3 and so we omit it. �
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