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ABSTRACT. As a counterpart to best approximation, the concept of best coap-
proximation was introduced in normed linear spaces by C. Franchetti and M.
Furi in 1972. Subsequently, this study was taken up by many researchers. In
this paper, we discuss some results on the existence and uniqueness of best ap-
proximation and best coapproximation when the underlying spaces are metric
linear spaces.

A new kind of approximation, called best coapproximation was intro-
duced in normed linear spaces by C. Franchetti and M. Furi [2] to obtain
some characterizations of real Hilbert spaces among real Banach spaces.
This study was further taken up by many researchers in normed linear spaces
and Hilbert spaces (see e.g. [3], [4], [9]). But only a few have taken up this
study in more general abstract spaces. The theory of best coapproximation
is much less developed as compared to the theory of best approximation in
abstract spaces. The present paper is also a step in this direction. In this
paper, we discuss the existence and uniqueness results on best approxima-
tion and best coapproximation in metric linear spaces thereby generalizing
the various known results. We start with a few definitions.
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Let G be a non-empty subset of a metric space (X, d). An element gy € G
is called a best approximation (best coapproximation) to z € X if

d(l‘,go) < d(x,g) (d(90>g) < d(x,g))

for all g € G. The set of all such gg € G is denoted by Pg(x)(Rg(z)). The
set G is called proximinal (co-proximinal) if Pg(z) (Rg(x)) contains
at least one element for every x € X. If for each z € X, Pg(x)(Rg(x))
has exactly one element in G, then the set G is called Chebyshev (co-
Chebyshev).

If z,y and z are any three points in a metric space (X, d) then z is said
to be a between point of x and y if

d(z,z) +d(z,y) = d(z,y).

A metric d defined on X is said to be a convex (strongly convex)
metric if for each pair z,y € X, d determine at least one (exactly one)
between point. The space X together with a convex metric d is called a
convex metric space.

A linear space X with a translation invariant metric d (i.e. d(x+z,y+2) =
d(z,y) for all z,y,z € X) such that addition and scalar multiplication are
continuous on (X, d) is called a metric linear space.

The space X of all entire functions, i.e.

X = {f cf(2) :z:anz:”7 |an\% —>Oasn—>oo}
n=0

with the metric d defined by
1
d(f,g) = max{|ag — bo|, |an — bp|n, n > 1},

where f(z) = > 07 qanz", g(z) = > .07 ;by2"™, is a non-normable metric
linear space (see [10], p. 238).
Remarks.
(i) A proximinal (co-proximinal) subset of a metric space is closed.
(ii) Every singleton subset of a metric space is Chebyshev (co-Chebyshev).
(iii) Every closed interval in R is proximinal (co-proximinal).
(iv) Pg(Pg(z)) = Pg(x) and Rg(Ra(x)) = Ra(x).
(v) Polx) = {go € G : d(z,g0) < d(z.g) for every g € G}

=GN B(z,d(z,qd)).
(vi) Rg(x) = {g0 € G : d(g0, 9) < d(x, g) for every g € G}

=GN [N{B(g,d(z,9)} : g € G}].
(vii) If G is a linear subspace of a metric linear space (X, d) then P;(0)N
G = {0} and R;'(0) N G = {0}, where P;*(0) = {z € X : 0 € Pg(z)} and
R;'(0)={z € X :0€ Rg(z)}.
(viii) If G is a linear subspace of a metric linear space (X, d), then d(g, R;;*(0))
=d(g,0) for every g € G.
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(ix) If G is a linear subspace of a metric linear space (X,d), then gy €
Pg(z) (Rg(x)) if and only if z — go € P5*(0) (R5'(0)).

Let (X,d) be a metric linear space and =,y € X, then we say that x is
orthogonal to y, = L y if d(x,0) < d(z,ay) for every scalar a. We say
that G L x if g L x for every g € G.

Concerning orthogonality and best coapproximation, we have

Theorem 1. Let G be a linear subspace of a metric linear space (X, d) such
that GL(x — go), then gy € Rg(x).

Proof. Since GL(z — go), we have g_L(z — go) for every g € G i.e. d(g,0) <
d(g,a(z — go)) for every scalar a. Take av = 1, we get d(g,0) < d(g,z — go)
for every g € G. This gives d(go,9 + g0) < d(x,g + go) for every g € G.
Hence go € Rg(x). O

Note. The converse of the above theorem is also true in normed linear
spaces (see [2]). We do not know whether this is true in metric linear
spaces. However, in metric linear spaces, we have

Theorem 2. Let G be a linear subspace of a metric linear space (X, d) and
go € G. Then agy € Rg(ax) for every scalar « if and only if GL(x — go).
Proof. Let agy € Rg(ax), then d(ago,g) < d(az,g) for every g € G
ie. d(0,9 — agy) < dlax — ago,g — ago) for every g € G. This gives
d(0,¢") < d(ax — ago, ') for every ¢’ € G i.e. d(¢',0) < d(g',ax — ago) for
every scalar a. Hence G L(x — go).

Conversely, assume GL(z — gg) i.e. ¢’ L(x — go) for every ¢’ € G. This
implies that d(¢’,0) < d(¢’,a(x — go)) for every scalar a and for every
g € G. This gives d(ago, g + age) < d(azx, g + agy) for every ¢’ € G i.e.
d(ago, g) < d(ax, g) for every g € G. Hence agy € Rg(ax). d

Before proving the next theorem, we prove the following lemmas.

Lemma 1. Let G be a closed linear subspace of a metric linear space (X, d).
If © ¢ G is such that ax has a best coapprozimation in G for every scalar
«, then every element of the subspace {x,G} (the subspace generated by
{z} UG) has a best coapproximation in G.

Proof. Let ax + ¢’ € {z,G} and gp € Rg(ax) i.e.
d(go,9) < d(ax,g) for every g € G.
This implies
dgo+9,9+9) <dlax+g.g+7)) for every g € G
ie.
d(go+4,9") <d(laz +4,g") for every ¢" € G

and so go + ¢’ € Rg(ax + ¢'). Hence every element of the subspace {z, G}
has a best coapproximation in G. ]
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Lemma 2. If G and H are two subspaces of a metric linear space (X,d)
such that G C H. If x ¢ H has a best coapproximation in H and if every
element of H has a best coapprozimation in G, then x has a best coapproz-
imation in G.

Proof. Let ¢ H be such that hg € Ry (x), i.e. d(ho, h) < d(z, h) for every

h € H. Now, for hg € H, let g9 € G be such that d(go,g) < d(ho,g) for
every g € G. Then d(go,g) < d(z,g) for every g € G, as G C H. Hence
go € Rg(x). ]

Theorem 3. If for every subspace G of a metric linear space (X, d), there
exists at least one element x € X \G such that ax has a best coapprozimation
in G for every scalar o, then for any subspace G of X every element of X
has a best coapproximation in G.

Proof. Using Lemmas 1 and 2 and proceeding as in Theorem 4.1 [5], we
obtain the result. 0

For normed linear spaces, the following result was proved in [3].

Theorem 4. Let G be a proziminal subspace of a metric linear space (X, d).
If P;1(0) is a conver set, then G is Chebyshev.

Proof. Suppose z € X and g1,92 € Pg(x). Since g1,92 € Pg(x), we
have © — g1, — g2 € P;'(0). Put # — gy = ¢’ and  — go = ¢”, where
¢',g" € P5'(0). We first claim that g1 — 2 € P5'(0). Since 0 € Pg(z — g1),
we have d(x — ¢1,0) < d(x — ¢1,9) for every g € G. This implies d(g; —
x,0) < d(—g,91 — z) for every g € G i.e. d(g1 — 2,0) < d(g1 — z,g") for
every g' € G. Therefore, gy —z € Pg 1(0). This proves our claim. Now,
z—go, 91— € P;'(0) and P;'(0) is convex, we have 3[(z—g2)+ (g1 —2)] €
P;H0) ie. 3[g" — ¢'] € P7'(0). Also 3[¢” — ¢'] = 3[g1 — g2] € G and
0 +lg1 — ¢2o] € P3'(0)\G = {0}. This implies g = go. Hence G is
Chebyshev. O

Remark. If we take G to be a proximinal subset of a metric linear space
(X, d), then the convexity of Py 1(0) need not imply the Chebyshevity of G.

Example 1. Let X = Rand G = {0, 1,2, 3, ..., 10} then G, being a compact
set is proximinal (see [1]) and Pa_l(O) = (—00,0.5] is a convex set but G is
not Chebyshev as P(0.5) = {0, 1}.

Analogously, concerning the co-Chebyshevity of G, we have the following
result:

Theorem 5. Let G be a co-proximinal subspace of a metric linear space

(X,d). If Rél(O) is a convex set, then G is co-Chebyshev.

Proof. The proof runs on similar lines as that of Theorem 4. [l
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Remark. If we take G to be a co-proximinal subset of a metric linear space
(X,d), then the convexity of R&l (0) need not imply the co-Chebyshevity
of G.

Example 2. Let X = R and G = [0,00), then R;'(0) = (—o0,0] and
Re(—1) = [0,1] i.e. R5'(0) is a convex set but G is not co-Chebyshev.

Before proceeding further, we recall the following results on coapproxi-
mation proved in [8].

Lemma 3 ([8] Theorems 5 and 6). Let G be a closed linear subspace of a
metric linear space (X,d), then the following statements are equivalent:
(i) G is co-proximinal.
(i) X = G + R5'(0).
(iii) For the canonical mapping wg : X — X /G defined by wg(x) =z + G,
we have

wa(Rg'(0)) = X/G.

Lemma 4 ([8], Theorem 7). For a closed linear subspace G of a metric
linear space (X, d), the following statements are equivalent:

(i) G is co-Chebyshev.

(ii)) X = G @ R;'(0), where @ means that the sum decomposition of each
x € X is unique.

(iii) G is co-proziminal and [R5 (0) — R;*(0)] N G = {0}.

(iv) G is co-proziminal and the restriction map wg(Rg'(0)) is one to one.

Remark. For best approximation, Lemmas 3 and 4 were proved in [7].
Concerning the proximinality of Ral(O), we have

Theorem 6. Let G be a co-proximinal subspace of a metric linear space
(X,d). If R;'(0) is a subspace of X then R;(0) is proziminal in X.

Proof. Since Rél (0) is linear subspace of the metric linear space (X, d), G is
co-Chebyshev in X, by Theorem 5. Therefore, X = G@Rél (0) by Lemma 4.
Let x € X\R&l(O) be arbitrary then = = g1 + g2,91 € G, g2 € Rél(O).
Consider d(z,g2) = d(z — g2,0) = d(g1,0) = d(g1, R;'(0)). This gives
d(z,g2) = d(z — g2, R;'(0)) = d(x, R5'(0)). Hence R;'(0) is proximinal
in X. U

Before proving the next theorem, we prove the following lemma.

Lemma 5. Let H be a co-proximinal linear subspace of a metric linear
space (X,d), then there exists an element z € X\{0} such that 0 € Ry (z).

Proof. Let + € X\H. Since H is co-proximinal, there exists yo € Ry(z)
and so x — yo € Ry (0). Hence 0 € Ry (x — yo),z — yo # 0. O
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Theorem 7. Let G be a co-proximinal linear subspace of a metric linear
space (X,d), then G is closed and in every linear subspace F, C X(x €
X\G) of form Fy, = G & [x] there exists an element z € F;\{0} such that
0€ Ra(z).

Proof. Since G is co-proximinal, G is closed and G is co-proximinal in every
subspace F, C X (z € X\G) of form F, = G@® [z]. Then by using the above
lemma, there exists z € F,;\{0} such that 0 € Rg(2). O

Note. A similar result for proximinality was proved in [11] for normed linear
spaces.

For the metric coprojection Rg : X — 29, the graph of R is denoted by
G(Rg) i.e. G(Rg) = {(z,Rg(x)) : x € X}. Concerning the graph of R¢,
we have the following theorem (a similar result for the metric projection Pg
was proved in [6]).

Theorem 8. If G is a co-Chebyshev subset of a metric space (X,d) then
the graph of the metric coprojection Rg is closed.

Proof. Let (y,z) be a limit point of G(R¢g) = {(x, Rg(z)) : € X}. Then
there exists a sequence (yn, Rg(yn)) in G(Rg) such that (yn, Rg(yn)) —
(y,2) e yn = y, Ra(yn) — 2. Since d(Ra(yn),9) < d(yn,g) for every
g € G, we get d(z,9) < d(y,g) for every g € G and so z € Rg(y). Since G
is co-Chebyshev, {z} = R (y). Therefore (y, z) € G(R¢g) and hence G(R¢)
is closed. 0

Remarks.
(1) A proximinal (co-proximinal) subset of a metric space is closed but the
converse is not true.

Example 3. Let X = R — {p}, then M = (p,p + 1] is a closed subset of
the metric space X with usual metric but it is not proximinal.

Example 4. The set of natural numbers is a closed subset of the real line
R but it is not co-proximinal.

(2) Whereas a compact subset of a metric space is proximinal (see [1]), it
need not be co-proximinal.

Example 5. Let X = R? and M = {(z,y) € R? : 22 + 3? = 1}, then
M is a compact subset of R? and hence proximinal. However, M is not
co-proximinal as (0,0) € R? does not have any best coapproximation in M.

This example also shows that a proximinal subset of a metric space need
not be co-proximinal.

(3) A co-proximinal subset of a metric space need not be proximinal.

Example 6. Let X =R — {1} and M = (1,2], then M a is co-proximinal
subset of X but it is not proximinal.
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(4) A Chebyshev subset of a metric space need not be co-Chebyshev.

Example 7. Let X = R and G = [1,2], then G is Chebyshev in the real
line R but it is not co-Chebyshev.

(5) A co-Chebyshev subset of a metric space need not be Chebyshev.

Example 8. Let X = R? with the metric d((z1,y1), (x2,92)) = |21 — 22| +
ly1 — y2| and G = {(z,y) € R? : x = y}. Then, X is a real Banach space
and G is a proximinal subspace of X. We have Pg(z,y) = {a(z,z) +
(1-a)(y,y) : 0 < a < 1} and Rg(x,y) = {(5L %)}, Hence G is
co-Chebyshev but not Chebyshev.

(6) In a Hilbert space H, it is known (see [2]) that if M is a subspace of H,
then the set of best approximations and set of best coapproximations are
the same. But if we take M to be a subset of H, then this need not be so.

Example 9. Let X = R? and M = {(z,y) € R? : 22 + y? = 1}, then every
element of M is best approximation to (0,0), but (0,0) does not have any
best coapproximation in M.

(7) It is known (see [6]) that if G is a subset of a convex metric space (X, d)
and = € P5'(go) = {zo € X : d(z0,90) = d(20,G)}, then z € P;*(go) for
every z between x and gg. But such a result is not true in case of best
coapproximation.

Example 10. Let X = R and G = (—1,1) then —2 € R;'(0), but —1 ¢
R;'(0).

(8) It is known (see [6]) that if G is a Chebyshev subset of a convex metric
space (X,d), then Pg(z) = Pg(x), where z € X is any element between x
and Pg(z). Does such a result hold for best coapproximation?
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