## ANDRZEJ KRYCZKA

# Deviation from weak Banach-Saks property for countable direct sums 


#### Abstract

We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach-Saks property. We prove that if $\left(X_{\nu}\right)$ is a sequence of Banach spaces and a Banach sequence lattice $E$ has the Banach-Saks property, then the deviation from the weak Banach-Saks property of an operator of a certain class between direct sums $E\left(X_{\nu}\right)$ is equal to the supremum of such deviations attained on the coordinates $X_{\nu}$. This is a quantitative version for operators of the result for the KötheBochner sequence spaces $E(X)$ that if $E$ has the Banach-Saks property, then $E(X)$ has the weak Banach-Saks property if and only if so has $X$.


1. Introduction. A Banach space $X$ is said to have the Banach-Saks (BS) property if every bounded sequence in $X$ contains a subsequence $\left(x_{n}\right)$ whose Cesàro means $\sum_{i=1}^{n} x_{i} / n$ converge in norm. Such a property was proved by Banach and Saks [1] for $L_{p}[0,1]$ spaces with $1<p<\infty$. The case $p=1$ was examined by Szlenk [14] who proved that every weakly convergent sequence in $L_{1}[0,1]$ contains a subsequence with strongly convergent Cesàro means. This variant of the BS property is considered also for operators (see [2]). A bounded linear operator $T$ between Banach spaces $X$ and $Y$ is said to have the weak Banach-Saks (WBS) property if every weakly null sequence $\left(x_{n}\right)$ in $X$ contains a subsequence $\left(x_{n}^{\prime}\right)$ such that $\left(T x_{n}^{\prime}\right)$ is Cesàro convergent in $Y$.
[^0]In this note, we focus on weakly null sequences which have no Cesàro convergent subsequences. Some quantitative information on the deviation from summability of such sequences is provided by Rosenthal's dichotomy [13]. Recall that every weakly null sequence in a Banach space $X$ contains a subsequence $\left(x_{n}\right)$ such that either all subsequences of $\left(x_{n}\right)$ are Cesàro convergent in norm to zero or no subsequence of $\left(x_{n}\right)$ is Cesàro convergent and then there is a number $\delta>0$ such that $\left\|\sum_{n \in A} c_{n} x_{n}\right\| \geq \delta \sum_{n \in A}\left|c_{n}\right|$ for all scalars $\left(c_{n}\right)$ and all subsets $A \subset \mathbb{N}$ with $|A| \leq 2^{k}, k \leq \min A$ and $k \in \mathbb{N}$, where $|A|$ is the number of elements of $A$.

Using Rosenthal's result, Partington [12] proved that a Banach space $X$ has the WBS property if and only if for all $\varepsilon>0$ and weakly null sequences $\left(x_{n}\right)$ in $X$ there exists a finite subset $A \subset \mathbb{N}$ such that $\left\|\sum_{n \in A} x_{n}\right\|<\varepsilon|A|$. This served to prove that the direct sums of Banach spaces, built on a Banach space with a hyperorthogonal basis and the BS property, preserve the WBS property.

Our generalization of Partington's result for direct sums goes in two directions: it has a quantitative character and concerns operators. We introduce a seminorm for operators which measures the deviation from the WBS property. We consider a certain class of operators acting between direct sums $E\left(X_{\nu}\right)$. In the main result, we show that the deviation from the WBS property of an operator is equal to the supremum of such deviations attained on the coordinates $X_{\nu}$, providing that a Banach sequence lattice $E$ has the Banach-Saks property. Our main tool in the proofs is a repeated averaging technique elaborated in $[7,8]$, and based on the spreading models of Brunel and Sucheston [3].
2. Preliminaries. A Banach space $E$ of real-valued functions on $\mathbb{N}=$ $\{1,2,3, \ldots\}$ with the natural partial order is called a Banach sequence lattice if, for every finite subset $A \subset \mathbb{N}$, the characteristic function $\chi_{A}$ of $A$ belongs to $E$, and if $x=(x(\nu)) \in E$ and $|y(\nu)| \leq|x(\nu)|$ for every $\nu \in \mathbb{N}$, then $y=(y(\nu)) \in E$ and $\|y\|_{E} \leq\|x\|_{E}$. The lattice $E$ is said to be regular (or $\sigma$-order continuous) if, for every sequence ( $x_{n}$ ) in $E$ with $x_{n} \downarrow 0$, it holds $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{E}=0$.

A Banach sequence lattice is a particular case of a Köthe function space with the counting measure space on $\mathbb{N}$ (see [9], [10]). Thus the Köthe dual space $E^{\prime}$ of $E$ is the space of all real-valued sequences $(y(\nu))$ such that $(x(\nu) y(\nu)) \in l_{1}$ for every $(x(\nu)) \in E$. The norm in $E^{\prime}$ is given for every $y=(y(\nu))$ by

$$
\|y\|_{E^{\prime}}=\sup \left\{\sum_{\nu=1}^{\infty}|x(\nu) y(\nu)|:\|x\|_{E} \leq 1, x=(x(\nu))\right\} .
$$

If $E$ is regular, then the Köthe dual space $E^{\prime}$ is isometrically isomorphic to the dual space $E^{*}$ (see [10, p. 29]).

Let $E$ be a Banach sequence lattice and $\left(X_{\nu}\right)$ a sequence of Banach spaces. By $E\left(X_{\nu}\right)$ we mean the Banach space of all sequences $x=(x(\nu))$ such that $x(\nu) \in X_{\nu}$ for every $\nu \in \mathbb{N}$ and $\left(\|x(\nu)\|_{X_{\nu}}\right) \in E$. The norm in $E\left(X_{\nu}\right)$ is given by

$$
\|x\|_{E\left(X_{\nu}\right)}=\left\|\left(\|x(\nu)\|_{X_{\nu}}\right)\right\|_{E} .
$$

If $X_{\nu}=X$ for all $\nu$, then $E(X)$ is called a Köthe-Bochner sequence space.
If $E$ is regular, then the dual space $\left(E\left(X_{\nu}\right)\right)^{*}$ is isometrically isomorphic to $E^{*}\left(X_{\nu}^{*}\right)$ (see [11, Proposition 3.1]). Using this fact, we can prove a counterpart of Lemma 1 of [5] without the separability assumption.

Lemma 1. Let $E$ be a regular Banach sequence lattice. If $x_{n}=\left(x_{n}(\nu)\right) \in$ $E\left(X_{\nu}\right)$ for all $n \in \mathbb{N}$ and $x_{n} \xrightarrow{w} 0$ in $E\left(X_{\nu}\right)$, then $x_{n}(\nu) \xrightarrow{w} 0$ in $X_{\nu}$ for every $\nu \in \mathbb{N}$.

Proof. Fix $k \in \mathbb{N}$ and let $x^{*} \in X_{k}^{*}$. Put $(f(\nu))=\left(0, \ldots, 0, x^{*}, 0, \ldots\right)$ with $x^{*}$ on $k$ th place. Clearly, $(f(\nu)) \in E^{*}\left(X_{\nu}^{*}\right)$. Let $\tau$ be the isometric isomorphism between $\left(E\left(X_{\nu}\right)\right)^{*}$ and $E^{*}\left(X_{\nu}^{*}\right)$ given by Proposition 3.1 of [11] (see also [6]). There exists $f=\tau^{-1}[(f(\nu))]$ in $\left(E\left(X_{\nu}\right)\right)^{*}$ such that $f(x)=\sum_{\nu=1}^{\infty}\langle x(\nu), f(\nu)\rangle$ for every $x=(x(\nu)) \in E\left(X_{\nu}\right)$. Then

$$
f\left(x_{n}\right)=\sum_{\nu=1}^{\infty}\left\langle x_{n}(\nu), f(\nu)\right\rangle=\left\langle x_{n}(k), f(k)\right\rangle=x^{*}\left(x_{n}(k)\right)
$$

Since $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$ and $x^{*} \in X_{k}^{*}$ was arbitrary, $x_{n}(k) \xrightarrow{w} 0$ in $X_{k}$.
3. Results. The space of all bounded linear operators between Banach spaces $X$ and $Y$ we denote by $L(X, Y)$. For a sequence $\left(x_{n}\right)$ in a Banach space, we put

$$
\psi\left(x_{n}\right)=\inf \left\{\left\||A|^{-1} \sum_{n \in A} x_{n}\right\|:|A|<\infty\right\}
$$

In our quantitative considerations, we will need a certain stability of $\psi$ with respect to repeated averaging of $\left(x_{n}\right)$. This can be achieved through the process of arithmetic averaging of $\left(x_{n}\right)$ on equipollent successive blocks. We say that $\left(y_{n}\right)$ is a sequence of successive arithmetic means (sam) for $\left(x_{n}\right)$ if there exist $m \in \mathbb{N}$ and a sequence of subsets $I_{n} \subset \mathbb{N}$ with $\max I_{n}<\min I_{n+1}$ and $\left|I_{n}\right|=m$ such that $y_{n}=\sum_{i \in I_{n}} x_{i} / m$ for all $n$. Clearly, $\psi\left(x_{n}\right) \leq \psi\left(y_{n}\right)$.

The next result is a part of Proposition 2.3 of [7], where the proof based on spreading models was given for a similar characteristics of a sequence related to the alternate signs Banach-Saks property. The proof for $\psi$ runs in much the same way. We include it for completeness.

Proposition 2. Let $\left(x_{n}\right)$ be a bounded sequence in a Banach space $X$. Then for every $\varepsilon>0$ there exists a sequence $\left(y_{n}\right)$ of sam for $\left(x_{n}\right)$ such that for
all finite subsets $A \subset \mathbb{N}$,

$$
\left\||A|^{-1} \sum_{n \in A} y_{n}\right\| \leq \psi\left(y_{n}\right)+\varepsilon
$$

Proof. If $\left(x_{n}\right)$ contains a Cauchy subsequence $\left(x_{n}^{\prime}\right)$, it is enough to ignore a finite number of terms of $\left(x_{n}^{\prime}\right)$ and put $y_{n}=x_{n}^{\prime}$. Assume now that $\left(x_{n}\right)$ has no Cauchy subsequence. We follow in part the line of the proof of Theorem II. 2 of [2]. We extract a subsequence $\left(x_{n}^{\prime}\right)$ of $\left(x_{n}\right)$ that is the fundamental sequence of the spreading model $F$ built on $\left(x_{n}\right)$. Put

$$
K=\inf \left\{\left\||A|^{-1} \sum_{n \in A} x_{n}^{\prime}\right\|_{F}:|A|<\infty\right\}
$$

There exist a finite subset $I \subset \mathbb{N}$ and $z=\sum_{i \in I} x_{i}^{\prime} /|I|$ such that $K \leq$ $\|z\|_{F} \leq K+\varepsilon / 4$. Let $\left(I_{n}\right)$ be a sequence of subsets $I_{n} \subset \mathbb{N}$ with max $I_{n}<$ $\min I_{n+1}$ and $\left|I_{n}\right|=|I|$ for all $n$. Put $z_{n}=\sum_{i \in I_{n}} x_{i}^{\prime} /\left|I_{n}\right|$. Since the norm of $F$ is invariant under spreading, $\left\|z_{n}\right\|_{F}=\|z\|_{F}$ for all $n$. Consequently, $K \leq\left\|\sum_{n \in A} z_{n} /|A|\right\|_{F} \leq K+\varepsilon / 4$ for all finite subsets $A \subset \mathbb{N}$.

By [2, Proposition I.1], for every $k \in \mathbb{N}$, we can choose $n_{k}$ so that for all $A \subset \mathbb{N}$ with $|A| \leq 2^{k}$ and $n_{k} \leq \min A$,

$$
\left\|\left\||A|^{-1} \sum_{n \in A} z_{n}\right\|-\right\||A|^{-1} \sum_{n \in A} z_{n} \|_{F} \mid<\varepsilon / 4
$$

We may assume that $n_{k}<n_{k+1}$. Let $z_{k}^{\prime}=z_{n_{k}}$. Then for all $A \subset \mathbb{N}$ with $|A| \leq 2^{k}$ and $k \leq \min A$,

$$
K-\varepsilon / 4 \leq\left\||A|^{-1} \sum_{n \in A} z_{n}^{\prime}\right\| \leq K+\varepsilon / 2
$$

Passing to a sequence of the arithmetic means of $\left(z_{n}^{\prime}\right)$ built on long enough successive blocks, we show now similar estimates for all finite $A \subset \mathbb{N}$. Let $|A|<\infty$ and $A_{0}=\left\{n \in A: n<\log _{2}|A|\right\}$. Then

$$
\left\|\sum_{n \in A_{0}} z_{n}^{\prime}\right\| \leq\left|A_{0}\right|(K+\varepsilon / 2), \quad\left\|\sum_{n \in A \backslash A_{0}} z_{n}^{\prime}\right\| \geq\left(|A|-\left|A_{0}\right|\right)(K-\varepsilon / 4)
$$

It follows that

$$
\begin{aligned}
\left\||A|^{-1} \sum_{n \in A} z_{n}^{\prime}\right\| & \geq|A|^{-1}\left(\left\|\sum_{n \in A \backslash A_{0}} z_{n}^{\prime}\right\|-\left\|\sum_{n \in A_{0}} z_{n}^{\prime}\right\|\right) \\
& \geq K-\varepsilon / 4-\left|A_{0}\right||A|^{-1}(2 K+\varepsilon / 4)
\end{aligned}
$$

There exists $m \in \mathbb{N}$ such that if $|A| \geq m$, then $\left|A_{0}\right||A|^{-1}(2 K+\varepsilon / 4) \leq \varepsilon / 4$ and, consequently,

$$
K-\varepsilon / 2 \leq\left\||A|^{-1} \sum_{n \in A} z_{n}^{\prime}\right\|<K+\varepsilon / 2
$$

Put $y_{n}=\sum_{i \in J_{n}} z_{i}^{\prime} /\left|J_{n}\right|$, where $\left(J_{n}\right)$ is a sequence of subsets $J_{n} \subset \mathbb{N}$ with $\max J_{n}<\min J_{n+1}$ and $\left|J_{n}\right|=m$ for all $n$. Then

$$
\left\||A|^{-1} \sum_{n \in A} y_{n}\right\| \leq \psi\left(y_{n}\right)+\varepsilon
$$

for every finite $A \subset \mathbb{N}$. Clearly, $\left(y_{n}\right)$ is a sequence of sam for $\left(x_{n}\right)$.
Definition 3. Let $X, Y$ be Banach spaces and $T \in L(X, Y)$. Define

$$
\Psi(T)=\sup \left\{\psi\left(T x_{n}\right): x_{n} \xrightarrow{w} 0,\left\|x_{n}\right\| \leq 1\right\} .
$$

Clearly, if $T \in L(X, Y)$ and $x_{n} \xrightarrow{w} 0$ in $X$, then $T x_{n} \xrightarrow{w} 0$ in $Y$. Thus, by [12, Theorem 2], $\Psi(T)=0$ if and only if $T$ has the WBS property. Applying Proposition 2, we can show, as in the proof of Proposition 2.5 of [7], that $\Psi$ is a seminorm in $L(X, Y)$. The procedure of stabilization of $\psi$ plays a key role also in the next result. The arguments of the proof are similar to those used in the proofs of Theorem 3 of [12] and Theorem 3.2 of [7].

Theorem 4. Let $\left(X_{\nu}\right)$ and $\left(Y_{\nu}\right)$ be sequences of Banach spaces and let $\left(T_{\nu}\right)$ be a sequence of operators such that $T_{\nu} \in \mathcal{L}\left(X_{\nu}, Y_{\nu}\right)$ for every $\nu \in \mathbb{N}$ and $\sup _{\nu \in \mathbb{N}}\left\|T_{\nu}\right\|<\infty$. If a Banach sequence lattice $E$ has the BS property and $T \in L\left(E\left(X_{\nu}\right), E\left(Y_{\nu}\right)\right)$ is given by $T x=\left(T_{\nu} x(\nu)\right)$ for every $x=(x(\nu)) \in$ $E\left(X_{\nu}\right)$, then $\Psi(T)=\sup _{\nu \in \mathbb{N}} \Psi\left(T_{\nu}\right)$.

Proof. It is enough to prove that $\Psi(T) \leq \sup _{\nu \in \mathbb{N}} \Psi\left(T_{\nu}\right)$, since $E\left(X_{\nu}\right)$ and $E\left(Y_{\nu}\right)$ contain isometric copies respectively of $X_{\nu}$ and $Y_{\nu}$. Let us fix $\varepsilon>0$ and choose a weakly null sequence $\left(x_{n}\right)$ in the unit ball of $E\left(X_{\nu}\right)$ so that $\Psi(T)-\varepsilon \leq \psi\left(T x_{n}\right)$.

First, we show that we can focus on a finite number of coordinates of the direct sums. Let $t_{n}=\left(\left\|T_{\nu} x_{n}(\nu)\right\|_{Y_{\nu}}\right)$ for every $x_{n}=\left(x_{n}(\nu)\right)$. Since $E$ has the BS property, passing to a subsequence, we may assume that the Cesàro means of all subsequences of $\left(t_{n}\right) \subset E$ converge to the same limit $t \in E$ (see [4]). Then $\psi\left(t_{n}^{0}-t\right)=0$ for every sequence $\left(t_{n}^{0}\right)$ of sam for $\left(t_{n}\right)$ and, by Proposition $2,\left(t_{n}^{0}\right)$ can be taken so that for every finite $A \subset \mathbb{N}$,

$$
\left\||A|^{-1} \sum_{n \in A} t_{n}^{0}-t\right\|_{E}<\frac{\varepsilon}{2}
$$

Let $\left(I_{n}\right)$ be a sequence of finite subsets of $\mathbb{N}$ with $\left|I_{n}\right|=m$ and $\max I_{n}<$ $\min I_{n+1}$ for all $n$ such that $t_{n}^{0}=m^{-1} \sum_{i \in I_{n}} t_{i}$. Put $x_{n}^{0}=m^{-1} \sum_{i \in I_{n}} x_{i}$.

For every $r \in \mathbb{N}$ and $z=(z(\nu))$, we will write $P_{r} z=(z(1), \ldots, z(r), 0,0, \ldots)$ and $Q_{r} z=z-P_{r} z$. Since the reflexive lattice $E$ is $\sigma$-order continuous, there is $r \in \mathbb{N}$ such that $\left\|Q_{r} t\right\|_{E}<\varepsilon / 2$. It follows that

$$
\left\|Q_{r}\left(|A|^{-1} \sum_{n \in A} t_{n}^{0}\right)\right\|_{E}<\frac{\varepsilon}{2}+\left\|Q_{r} t\right\|_{E}<\varepsilon
$$

Thus, for every finite $A \subset \mathbb{N}$,

$$
\begin{aligned}
\varepsilon & >\left\|Q_{r}\left(|A|^{-1} \sum_{n \in A} t_{n}^{0}\right)\right\|_{E}=\left\|Q_{r}\left(|A|^{-1} \sum_{n \in A} \frac{1}{m} \sum_{i \in I_{n}}\left\|T_{\nu} x_{i}(\nu)\right\|_{Y_{\nu}}\right)\right\|_{E} \\
& \geq\left\|Q_{r}\left(|A|^{-1} \sum_{n \in A}\left\|T_{\nu} x_{n}^{0}(\nu)\right\|_{Y_{\nu}}\right)\right\|_{E} \geq\left\|Q_{r}\left(\left\||A|^{-1} \sum_{n \in A} T_{\nu} x_{n}^{0}(\nu)\right\|_{Y_{\nu}}\right)\right\|_{E} \\
& =\left\||A|^{-1} \sum_{n \in A} Q_{r} T x_{n}^{0}\right\|_{E\left(Y_{\nu}\right)} .
\end{aligned}
$$

Passing to a subsequence of $\left(x_{n}^{0}\right)$, we may assume that for each coordinate $1 \leq \nu \leq r$ the limit $\lambda_{\nu}=\lim _{n}\left\|x_{n}^{0}(\nu)\right\|$ exists and $\left\|x_{n}^{0}(\nu)\right\|<\lambda_{\nu}+\varepsilon /\left\|P_{r} e\right\|_{E}$ for every $n$, where $e=(1,1, \ldots)$. Put $\alpha_{\nu}=\lambda_{\nu}+\varepsilon /\left\|P_{r} e\right\|_{E}$. By the equipollence of blocks, all sequences of sam for $\left(x_{n}\right)$ are weakly null and, by Lemma 1 , so are all sequences restricted to coordinates. Now we stabilize $\psi$ consecutively on coordinates $k=1,2, \ldots, r$. Write $y_{n}^{0}(\nu)=T_{\nu} x_{n}^{0}(\nu) / \alpha_{\nu}$.

In the first step, we apply Proposition 2 to $\left(y_{n}^{0}(1)\right)$. There is a sequence $\left(x_{n}^{1}\right)$ of sam for $\left(x_{n}^{0}\right)$ such that for the sequence $\left(y_{n}^{1}(1)\right)$ of sam for $\left(y_{n}^{0}(1)\right)$, where $y_{n}^{1}(1)=T_{1} x_{n}^{1}(1) / \alpha_{1}$, we have

$$
\left\||A|^{-1} \sum_{n \in A} y_{n}^{1}(1)\right\|_{Y_{1}} \leq \psi\left(y_{n}^{1}(1)\right)+\varepsilon
$$

for all finite $A \subset \mathbb{N}$. We put $y_{n}^{1}(\nu)=T_{\nu} x_{n}^{1}(\nu) / \alpha_{\nu}$ for $\nu \neq 1$.
Let $k>1$. By Proposition 2 applied to $\left(y_{n}^{k-1}(k)\right.$ ), we obtain a sequence $\left(x_{n}^{k}\right)$ of sam for $\left(x_{n}^{k-1}\right)$ such that for the sequence $\left(y_{n}^{k}(k)\right)$ of sam for $\left(y_{n}^{k-1}(k)\right)$, where $y_{n}^{k}(k)=T_{k} x_{n}^{k}(k) / \alpha_{k}$, we have

$$
\left\||A|^{-1} \sum_{n \in A} y_{n}^{k}(k)\right\|_{Y_{k}} \leq \psi\left(y_{n}^{k}(k)\right)+\varepsilon
$$

for all finite $A \subset \mathbb{N}$. Again we put $y_{n}^{k}(\nu)=T_{\nu} x_{n}^{k}(\nu) / \alpha_{\nu}$ for $\nu \neq k$. Since the relation sam is transitive, all sequences $\left(y_{n}^{r}(\nu)\right), 1 \leq \nu \leq r$, are built on the common sequence $\left(x_{n}^{r}\right)$ of sam for $\left(x_{n}^{\nu}\right)$. Consequently,

$$
\left\||A|^{-1} \sum_{n \in A} y_{n}^{r}(\nu)\right\|_{Y_{\nu}} \leq \psi\left(y_{n}^{\nu}(\nu)\right)+\varepsilon \leq \psi\left(y_{n}^{\nu+1}(\nu)\right)+\varepsilon \leq \cdots \leq \psi\left(y_{n}^{r}(\nu)\right)+\varepsilon
$$

for all finite $A \subset \mathbb{N}$ and every $1 \leq \nu \leq r$. Clearly, $\left\|x_{n}^{r}(\nu) / \alpha_{\nu}\right\|_{X_{\nu}} \leq 1$ for all $n$. It follows that

$$
\begin{aligned}
& \left\||A|^{-1} \sum_{n \in A} P_{r} T x_{n}^{r}\right\|_{E\left(Y_{\nu}\right)}=\left\|P_{r}\left(\alpha_{\nu}\left\||A|^{-1} \sum_{n \in A} y_{n}^{r}(\nu)\right\|_{Y_{\nu}}\right)\right\|_{E} \\
& \leq\left\|P_{r}\left(\lambda_{\nu}+\varepsilon /\left\|P_{r} e\right\|_{E}\right)\right\|_{E} \max _{1 \leq \nu \leq r}\left\||A|^{-1} \sum_{n \in A} y_{n}^{r}(\nu)\right\|_{Y_{\nu}} \\
& \leq(1+\varepsilon)\left(\max _{1 \leq \nu \leq r} \psi\left(y_{n}^{r}(\nu)\right)+\varepsilon\right)
\end{aligned}
$$

Assume that $\max _{1 \leq \nu \leq r} \psi\left(y_{n}^{r}(\nu)\right)$ is attained for $j, 1 \leq j \leq r$. By transitivity of the relation sam, $\left(x_{n}^{r}\right)$ is a sequence of sam for $\left(x_{n}\right)$. It follows that

$$
\begin{aligned}
\Psi(T)-\varepsilon & \leq \psi\left(T x_{n}\right) \leq \psi\left(T x_{n}^{r}\right) \leq\left\||A|^{-1} \sum_{n \in A} T x_{n}^{r}\right\|_{E\left(Y_{\nu}\right)} \\
& \leq\left\||A|^{-1} \sum_{n \in A} P_{r} T x_{n}^{r}\right\|_{E\left(Y_{\nu}\right)}+\left\||A|^{-1} \sum_{n \in A} Q_{r} T x_{n}^{r}\right\|_{E\left(Y_{\nu}\right)} \\
& \leq(1+\varepsilon)\left(\psi\left(y_{n}^{r}(j)\right)+\varepsilon\right)+\varepsilon \leq(1+\varepsilon)\left(\Psi\left(T_{j}\right)+\varepsilon\right)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was chosen arbitrary, $\Psi(T) \leq \sup _{\nu \in \mathbb{N}} \Psi\left(T_{\nu}\right)$.
Considering the identity operator on $E\left(X_{\nu}\right)$, we obtain the following corollary which includes Partington's [12] qualitative result. By an example of [12], the BS property of $E$ cannot be replaced here by the WBS property.

Corollary 5. Let $E$ have the $B S$ property. Then $E\left(X_{\nu}\right)$ has the WBS property if and only if every $X_{\nu}$ has the WBS property.

## References

[1] Banach, S., Saks, S., Sur la convergence forte dans les champs L ${ }^{p}$, Studia Math. 2 (1930), 51-57.
[2] Beauzamy, B., Banach-Saks properties and spreading models, Math. Scand. 44 (1979), 357-384.
[3] Brunel, A., Sucheston, L., On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294-299.
[4] Erdös, P., Magidor, M., A note on regular methods of summability and the Ba-nach-Saks property, Proc. Amer. Math. Soc. 59 (1976), 232-234.
[5] Krassowska, D., Płuciennik, R., A note on property (H) in Köthe-Bochner sequence spaces, Math. Japon. 46 (1997), 407-412.
[6] Krein, S. G., Petunin, Yu. I., Semenov, E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, R.I., 1982.
[7] Kryczka, A., Alternate signs Banach-Saks property and real interpolation of operators, Proc. Amer. Math. Soc. 136 (2008), 3529-3537.
[8] Kryczka, A., Mean separations in Banach spaces under abstract interpolation and extrapolation, J. Math. Anal. Appl. 407 (2013), 281-289.
[9] Lin, P.-K., Köthe-Bochner function spaces, Birkhäuser Boston, Inc., Boston, MA, 2004.
[10] Lindenstrauss, J., Tzafriri, L., Classical Banach spaces. II. Function spaces, SpringerVerlag, Berlin-New York, 1979.
[11] Mastyło, M., Interpolation spaces not containing $l_{1}$, J. Math. Pures Appl. 68 (1989), 153-162.
[12] Partington, J. R., On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369-374.
[13] Rosenthal, H. P., Weakly independent sequences and the Banach-Saks property, Bull. London Math. Soc. 8 (1976), 22-24.
[14] Szlenk, W., Sur les suites faiblement convergentes dans l'espace L, Studia Math. 25 (1965), 337-341.

Andrzej Kryczka
Institute of Mathematics
Maria Curie-Skłodowska University
20-031 Lublin
Poland
e-mail: andrzej.kryczka@umcs.pl
Received November 5, 2013


[^0]:    2010 Mathematics Subject Classification. 46A45, 46B42.
    Key words and phrases. Weak Banach-Saks property, Köthe-Bochner space, direct sum.

