ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXVII, NO. 1, 2013

SECTIO A

1 - 10

ANNA BEDNARSKA

On lifts of projectable-projectable classical linear connections to the cotangent bundle

ABSTRACT. We describe all $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D\colon Q^{\tau}_{proj-proj}$ $\to QT^*$ transforming projectable-projectable classical torsion-free linear connections ∇ on fibred-fibred manifolds Y into classical linear connections $D(\nabla)$ on cotangent bundles T^*Y of Y. We show that this problem can be reduced to finding $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D\colon Q^{\tau}_{proj-proj} \leadsto (T^*, \otimes^p T^* \otimes \otimes^q T)$ for $p=2, \ q=1$ and $p=3, \ q=0$.

1. Basic definitions and examples. A fibred-fibred manifold Y is any commutative diagram

$$Y = Y_1 \xrightarrow{p_{12}} Y_2$$

$$\downarrow^{p_{13}} \qquad \qquad \downarrow^{p_{24}}$$

$$Y_3 \xrightarrow{p_{34}} Y_4$$

where maps $p_{12}, p_{13}, p_{24}, p_{34}$ are surjective submersions and an induced map $Y_1 \to Y_2 \times_{Y_4} Y_3$, $y \mapsto (p_{12}(y), p_{13}(y))$ is a surjective submersion. A fibred-fibred manifold has dimension (m_1, m_2, n_1, n_2) if $\dim Y_1 = m_1 + m_2 + n_1 + n_2$, $\dim Y_2 = m_1 + m_2$, $\dim Y_3 = m_1 + n_1$, $\dim Y_4 = m_1$. For two fibred-fibred manifolds Y, \widetilde{Y} of the same dimension (m_1, m_2, n_1, n_2) , a morphism $f: Y \to \widetilde{Y}$ is a quadruple of local diffeomorphisms $f_1: Y_1 \to \widetilde{Y}_1$, $f_2: Y_2 \to \widetilde{Y}_1$

²⁰¹⁰ Mathematics Subject Classification. 58A20, 58A32.

Key words and phrases. Fibred-fibred manifold, projectable-projectable linear connection, natural operator.

 \widetilde{Y}_2 , $f_3: Y_3 \to \widetilde{Y}_3$, $f_4: Y_4 \to \widetilde{Y}_4$ such that all squares of the cube in question are commutative, [2], [7].

All fibred-fibred manifolds of the given dimension (m_1, m_2, n_1, n_2) and all their morphisms form the category which we denote by $\mathcal{F}^2\mathcal{M}_{m_1, m_2, n_1, n_2}$.

Every object from the category $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ is locally isomorphic to the standard fibred-fibred manifold

$$\mathbb{R}^{m_1, m_2, n_1, n_2} = \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \longrightarrow \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{R}^{m_1} \times \mathbb{R}^{n_1} \longrightarrow \mathbb{R}^{m_1}$$

where arrows are obvious projections.

A classical linear connection ∇ on a fibred-fibred manifold Y is a tangent bundle homothety invariant section $\nabla \colon TY \to J^1TY$ of the 1-jet prolongation $J^1TY \to TY$ of the tangent bundle TY. Recall that a classical linear connection ∇ on Y is called a projectable-projectable linear connection on a fibred-fibred manifold Y if there exist classical linear connections ∇_2 , ∇_3 , ∇_4 on Y_2 , Y_3 , Y_4 , respectively, such that the connection ∇ projects into ∇_2 and ∇_3 by maps p_{12} and p_{13} , respectively, and connections ∇_2 and ∇_3 project into ∇_4 by maps p_{24} and p_{34} , respectively, [4], [1].

A classical linear connection $\nabla \colon TY \to J^1TY$ on Y determines the corresponding covariant derivative $\nabla \colon \mathfrak{X}(Y) \times \mathfrak{X}(Y) \to \mathfrak{X}(Y)$ of vector fields on Y satisfying the additional projectability-projectability condition.

We say that a classical linear connection ∇ on a fibred-fibred manifold Y is torsion-free if the torsion tensor T(X,Y) of ∇ vanishes, i.e. $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y] = 0$.

In the present paper we consider a problem of constructing of a classical linear connection $D(\nabla)$ on the cotangent bundle T^*Y of Y by means of a projectable-projectable classical torsion-free linear connection ∇ on an (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifold Y. To this aim we will consider a characterization of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators D: $Q_{proj-proj}^{\tau} \rightsquigarrow QT^*$ corresponding to above constructions.

A similar problem in the case of usual n-dimensional manifolds M and classical linear connections ∇ (not necessarily torsion-free) was studied by M. Kureš [6] and it was extended to $\otimes^k T^*M$ in [5].

We will formulate definitions of natural operators which can be treated as special cases of the general concept of natural operators from [3].

Definition 1. An $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator $D\colon Q_{proj-proj}^{\tau} \leadsto QT^*$ transforming projectable-projectable classical torsion-free linear connections ∇ on (m_1,m_2,n_1,n_2) -dimensional fibred-fibred manifolds Y into classical linear connections $D(\nabla)$ on T^*Y is a family $D=(D_Y)$ of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariant regular operators

$$D_Y \colon Q^{\tau}_{proj\text{-}proj}(Y) \to Q(T^*Y)$$

for any fibred-fibred manifold Y of the dimension (m_1, m_2, n_1, n_2) , where $Q_{proj-proj}^{\tau}(Y)$ is the set of all projectable-projectable classical torsion-free linear connections on the fibred-fibred manifold Y and $Q(T^*Y)$ is the set of all classical linear connections (not necessarily torsion-free) on T^*Y . The $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariance of (the operator) D means that if any projectable-projectable classical torsion-free linear connections $\nabla \in Q^{\tau}_{proj-proj}(Y)$, $\widetilde{\nabla} \in Q^{\tau}_{proj-proj}(\widetilde{Y})$ are φ -related by an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariant map $\varphi \colon Y \to \widetilde{Y}$ (i.e. $J^1 T \varphi \circ \nabla = \widetilde{\nabla} \circ T \varphi$) then induced classical linear connections $D(\nabla) \in Q(T^*Y)$ and $D(\widetilde{\nabla}) \in Q(T^*\widetilde{Y})$ are $T^*\varphi$ -related by $T^*\varphi \colon T^*Y \to Q(T^*Y)$ $T^*\widetilde{Y}$ (i.e. $J^1T(T^*\varphi)\circ D(\nabla)=D(\widetilde{\nabla})\circ T(T^*\varphi)$), where $T^*\varphi$ is a cotangent map to φ .

The regularity of D means that D transforms smoothly parameterized families of projectable-projectable classical torsion-free linear connections into smoothly parameterized families of classical linear connections.

Example 1. An example of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D: Q_{proj\text{-}proj}^{\tau} \leadsto QT^*$$

is a family $D^{T^*} = (D_V^{T^*})$ of operators

$$D_Y^{T^*} \colon Q^{\tau}_{\textit{proj-proj}}(Y) \to Q(T^*Y)$$

given by the formula $D_Y^{T^*}(\nabla) = \nabla^{T^*Y}$, where $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$, $\nabla \in Q_{proj-proj}^{\tau}(Y)$ and ∇^{T^*Y} is a horizontal lift of ∇ on Y to the cotangent bundle T^*Y .

We define a horizontal lift ∇^{T^*Y} of a projectable-projectable classical torsion-free linear connection ∇ to the cotangent bundle T^*Y as

$$\nabla^{T^*Y} = \nabla^C - R_V^V(\nabla),$$

where ∇^C is the complete lift of ∇ and $R_V^V(\nabla)$ means the vertical lift of the curvature tensor $R_Y(\nabla)$ of ∇ , [8].

Definition 2. An $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D \colon Q^{\tau}_{proj\text{-}proj} \leadsto (T^*, \otimes^p T^* \otimes \otimes^q T)$$

transforming projectable-projectable classical torsion-free linear connections ∇ on (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifolds Y into fibred maps $D(\nabla)$: $T^*Y \to \otimes^p T^*Y \otimes \otimes^q TY$ covering the identity id_Y is a family of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariant regular operators

$$D = (D_Y): Q_{proi-proj}^{\tau}(Y) \to C_Y^{\infty}(T^*Y, \otimes^p T^*Y \otimes \otimes^q TY)$$

defined for any (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifold Y.

The $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariance of D means that if two projectableprojectable classical torsion-free linear connections $\nabla \in Q^{\tau}_{proj-proj}(Y)$ and $\widetilde{\nabla} \in Q_{proj-proj}^{\tau}(\widetilde{Y})$ are φ -related by an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -map $\varphi \colon Y \to \widetilde{Y}$ then induced maps $D(\nabla) \colon T^*Y \to \otimes^p T^*Y \otimes \otimes^q TY$ and $D(\widetilde{\nabla}) \colon T^*\widetilde{Y} \to \otimes^p T^*\widetilde{Y} \otimes \otimes^q T\widetilde{Y}$ are φ -related, i.e. the following diagram is commutative

$$T^*Y \xrightarrow{D(\nabla)} \otimes^p T^*Y \otimes \otimes^q TY$$

$$T^*\varphi \downarrow \qquad \qquad \downarrow \otimes^p T^*\varphi \otimes \otimes^q T\varphi$$

$$T^*\widetilde{Y} \xrightarrow{D(\widetilde{\nabla})} \otimes^p T^*\widetilde{Y} \otimes \otimes^q T\widetilde{Y}$$

where $T\varphi\colon TY\to T\widetilde{Y}$ is a tangent map to $\varphi\colon Y\to \widetilde{Y}$ and $T^*\varphi\colon T^*Y\to T^*\widetilde{Y}$ is a cotangent map to φ .

Example 2. An example of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D: Q_{proj\text{-}proj}^{\tau} \leadsto (T^*, \otimes^3 T^*)$$

is a family of operators $D^1 = (D_Y^1)$,

$$D_Y^1: Q_{proj-proj}^{\tau}(Y) \to C_Y^{\infty}(T^*Y, \otimes^3 T^*Y),$$

 $D^1(\nabla): T^*Y \to \otimes^3 T^*Y$ given by $D^1_Y(\nabla)(\omega) = \omega \otimes \omega \otimes \omega$, where $\omega \in T^*_yY$, $y \in Y$, $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$, $\nabla \in Q^{\tau}_{proj\text{-}proj}(Y)$.

Another example of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D: Q_{proj\text{-}proj}^{\tau} \leadsto (T^*, \otimes^3 T^*)$$

is a family of operators $D^2 = (D_Y^2)$,

$$D_Y^2: Q_{proj-proj}^{\tau}(Y) \to C_Y^{\infty}(T^*Y, \otimes^3 T^*Y),$$

 $D^2(\nabla): T^*Y \to \otimes^3 T^*Y$ given by $D_Y^2(\nabla)(\omega) = \langle R_y(\nabla), \omega \rangle$, where $R(\nabla)$ is the curvature tensor of ∇ , $\omega \in T_y^*Y$, $y \in Y$, $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$, $\nabla \in Q_{proj-proj}^{\tau}(Y)$.

Example 3. An example of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D \colon Q^{\tau}_{\textit{proj-proj}} \leadsto (T^*, \otimes^2 T^* \otimes T)$$

is a family of operators $D^3 = (D_Y^3)$,

$$D_Y^3: Q_{proj-proj}^{\tau}(Y) \to C_Y^{\infty}(T^*Y, \otimes^2 T^*Y \otimes TY),$$

 $D^3(\nabla): T^*Y \to \otimes^2 T^*Y \otimes TY$ given by $\langle D_Y^3(\nabla)(\omega), v_1 \otimes v_2 \rangle = \langle \omega, v_1 \rangle v_2$, where $\omega \in T_y^*Y$, $v_1, v_2 \in T_yY$, $y \in Y$, $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1, m_2, n_1, n_2})$, $\nabla \in Q_{proj-proj}^{\tau}(Y)$.

2. Some lemmas. The following lemma shows that the description of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D\colon Q^{\tau}_{proj\text{-}proj} \leadsto QT^*$ can be replaced by the description of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D\colon Q^{\tau}_{proj\text{-}proj} \leadsto (T^*, \otimes^p T^* \otimes \otimes^q T)$.

Lemma 1. There exists a bijection between the set of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D: Q^{\tau}_{proj-proj} \hookrightarrow QT^*$ and the set of sequences $(D_i)_{i=1,\dots,8}$ consisting of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators of the following forms:

$$D_{1} \colon Q_{proj-proj}^{\tau} \leadsto (T^{*}, T^{*} \otimes T^{*} \otimes T)$$

$$D_{2} \colon Q_{proj-proj}^{\tau} \leadsto (T^{*}, T^{*} \otimes T^{*} \otimes T^{*})$$

$$D_{3} \colon Q_{proj-proj}^{\tau} \leadsto (T^{*}, T \otimes T^{*} \otimes T)$$

$$D_{4} \colon Q_{proj-proj}^{\tau} \leadsto (T^{*}, T \otimes T^{*} \otimes T^{*})$$

$$D_{5} \colon Q_{proj-proj}^{\tau} \leadsto (T^{*}, T^{*} \otimes T \otimes T)$$

$$D_{6} \colon Q_{proj-proj}^{\tau} \leadsto (T^{*}, T^{*} \otimes T \otimes T^{*})$$

$$D_{7} \colon Q_{proj-proj}^{\tau} \leadsto (T^{*}, T \otimes T \otimes T)$$

$$D_{8} \colon Q_{proj-proj}^{\tau} \leadsto (T^{*}, T \otimes T \otimes T^{*}).$$

Proof. Let $\nabla \in Q_{proj-proj}^{\tau}(Y)$ be a projectable-projectable classical torsion-free linear connection on an (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifold Y. Let $v \in T_v^*Y$, $y \in Y$.

The connection ∇ yields a decomposition of the tangent space T_vT^*Y of T^*Y at v of the form

$$T_v T^* Y = H_v^{\nabla} \oplus V_v T^* Y,$$

where H_v^{∇} is a ∇ -horizontal subspace and $V_v T^* Y$ is a vertical subspace.

We have an isomorphism $H_v^{\nabla} \cong T_y Y$ by the restriction of the differential $T_v \pi \colon T_v T^* Y \to T_y Y$ of the cotangent bundle projection $\pi \colon T^* Y \to Y$ to H_v^{∇} . Moreover, we have an isomorphism $V_v T^* Y \cong T_y^* Y$ by the standard isomorphism

$$T_y^*Y \ni \omega \to \frac{d}{dt}\Big|_{0} (v + t\omega) \in T_v T^*Y = V_v T^*Y.$$

Thus we have a decomposition

$$T_v T^* Y \cong T_y Y \oplus T_u^* Y$$

canonically depending on ∇ .

Consequently, we have a linear isomorphism

$$T_v^*T^*Y \otimes T_v^*T^*Y \otimes T_vT^*Y \cong (T_yY \oplus T_y^*Y)^* \otimes (T_yY \oplus T_y^*Y)^* \otimes (T_yY \oplus T_y^*Y)$$
 canonically depending on ∇ .

We have an isomorphism

$$(T_yY \oplus T_y^*Y)^* \cong T_y^*Y \oplus T_yY$$

by standard identifications

$$(V \oplus W)^* = V^* \oplus W^*$$
 and $V^{**} = V$,

from linear algebra.

Thus we have the following linear isomorphism

$$T_v^*T^*Y \otimes T_v^*T^*Y \otimes T_vT^*Y \cong (T_y^*Y \otimes T_y^*Y \otimes T_yY) \oplus (T_y^*Y \otimes T_y^*Y \otimes T_y^*Y)$$

$$\oplus (T_yY \otimes T_y^*Y \otimes T_yY) \oplus (T_yY \otimes T_y^*Y \otimes T_y^*Y) \oplus (T_y^*Y \otimes T_yY \otimes T_yY)$$

$$\oplus (T_y^*Y \otimes T_yY \otimes T_y^*Y) \oplus (T_yY \otimes T_yY \otimes T_yY) \oplus (T_yY \otimes T_yY \otimes T_yY)$$

canonically depending on ∇ .

Using the above isomorphism, for any $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator $D\colon Q_{proj-proj}^{\tau} \rightsquigarrow QT^*$, we can define a sequence of eight $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators D_1,\ldots,D_8 such as in Lemma 1, taking

$$(1) (D_1(\nabla)(v), \dots, D_8(\nabla)(v)) := (D(\nabla) - \nabla^{T^*})(v)$$

for any $\nabla \in Q^{\tau}_{proj-proj}(Y)$, $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$, $v \in T_y^*Y$, $y \in Y$, where ∇^{T^*} is the horizontal lift of ∇ to T^*Y .

The difference $D(\nabla) - \nabla^{T^*}$ of linear connections $D(\nabla)$ and ∇^{T^*} means a tensor field of type $T^* \otimes T^* \otimes T$ on T^*Y .

Above relation (1) makes sense because it holds $(D(\nabla) - \nabla^{T^*})(v) \in T_v^* T^* Y \otimes T_v^* T^* Y \otimes T_v T^* Y$ and $(D_1(\nabla)(v), \dots, D_8(\nabla)(v)) \in ((T_y^* Y \otimes T_y^* Y \otimes T_y Y)) \oplus \dots \oplus (T_y Y \otimes T_y Y \otimes T_y Y)) \cong T_v^* T^* Y \otimes T_v^* T^* Y \otimes T_v T^* Y$, where \cong is a linear isomorphism canonically depending on ∇ describing above.

It is obvious that an assignment $D \mapsto (D_i)_{i=1,\dots,8}$ yields the bijection from Lemma 1.

Note that the description of natural operators D_1 , D_4 and D_6 from Lemma 1 can be reduced to the description of operators of type D_1 since by obviously linear isomorphisms obtaining by permutations of factors

$$T_{y}^{*}Y\otimes T_{y}^{*}Y\otimes T_{y}Y\cong T_{y}Y\otimes T_{y}^{*}Y\otimes T_{y}^{*}Y\cong T_{y}^{*}Y\otimes T_{y}Y\otimes T_{y}^{*}Y$$

for any $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$ and $y \in Y$ we have

Lemma 2. There exists the bijection between the set of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ natural operators $D_1: Q^{\tau}_{proj\text{-}proj} \rightsquigarrow (T^*, T^* \otimes T^* \otimes T)$ and the set of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ natural operators $D_4: Q^{\tau}_{proj\text{-}proj} \rightsquigarrow (T^*, T \otimes T^* \otimes T^*)$.

Similarly, there exists the bijection between the set of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ natural operators $D_1: Q^{\tau}_{proj-proj} \rightsquigarrow (T^*, T^* \otimes T^* \otimes T)$ and the set of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ natural operators $D_6: Q^{\tau}_{proj-proj} \rightsquigarrow (T^*, T^* \otimes T \otimes T^*)$.

Proof. The first bijection is of the form $D_1 \mapsto D_4$, where $D_4(\nabla)(v) := D_1(\nabla)(v)$, $v \in T_y^*Y$, $y \in Y$, $\nabla \in Q_{proj-proj}^{\tau}(Y)$ modulo the identification $T_y^*Y \otimes T_y^*Y \otimes T_yY \cong T_yY \otimes T_y^*Y \otimes T_y^*Y$ of the form $\omega_1 \otimes \omega_2 \otimes \omega \mapsto \omega \otimes \omega_1 \otimes \omega_2$.

The second bijection is analogous.

Moreover, we show that $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators D_3 , D_5 , D_7 and D_8 from Lemma 1 are zero. It holds the following general fact.

Lemma 3. Let p < q. Then every $\mathcal{F}^2 \mathcal{M}_{m_1, m_2, n_1, n_2}$ -natural operator

$$D \colon Q^{\tau}_{proj\text{-}proj} \leadsto (T^*, \otimes^p T^* \otimes \otimes^q T)$$

is zero.

Proof. Let $\nabla \in Q^{\tau}_{proj\text{-}proj}(Y)$, $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$, $v \in T_y^*Y$, $y \in Y$. We have to show that $D(\nabla)(v) = 0 \in \otimes^p T_y^*Y \otimes \otimes^q T_yY$. By the $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariance of D with respect to $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -charts we can assume $Y = \mathbb{R}^{m_1,m_2,n_1,n_2}$, $y = (0,0,0,0) \in \mathbb{R}^{m_1+m_2+n_1+n_2}$.

Then using the invariance of D with respect to $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -maps (homotheties)

$$\frac{1}{t}id \colon \mathbb{R}^{m_1, m_2, n_1, n_2} \to \mathbb{R}^{m_1, m_2, n_1, n_2} \qquad \text{for } t \neq 0,$$

we get the condition

$$D(\nabla)(v) = \left(\frac{1}{t}\right)^{q-p} D\left(\left(\frac{1}{t}id\right)_* \nabla\right)(tv), \qquad t \neq 0.$$

But the family (∇_t) of projectable-projectable classical torsion-free linear connections given by

$$\nabla_t := \begin{cases} \left(\frac{1}{t}id\right)_* \nabla, & t \neq 0 \\ \nabla_0, & t = 0, \end{cases}$$

where ∇_0 is the flat torsion-free linear connection (i.e. with zero Christoffel symbols), is smoothly parameterized because of the fact that ∇_t has Christoffel symbols of the form $t \cdot \Gamma^a_{bc}(tx)$ at the chart $id_{\mathbb{R}^{m_1,m_2,n_1,n_2}}$, where $\Gamma^a_{bc}(x)$ are the Christoffel symbols for ∇ .

Thus using the regularity of D and taking $t \to \infty$, we get $D(\nabla)(v) = 0$ since $(\frac{1}{t})^{q-p} = t^{p-q} \to 0$ for p < q.

3. The main results. As the summary of Lemmas 1–3 we get the following main theorem.

Theorem 1. There exists the bijection between the set of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D\colon Q^{\tau}_{proj\text{-}proj} \leadsto QT^*$ and the set of sequences $(\widetilde{D}_i)_{i=1,2,3,4}$ consisting of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $\widetilde{D}_1,\widetilde{D}_2,\widetilde{D}_3\colon Q^{\tau}_{proj\text{-}proj} \leadsto (T^*,T^*\otimes T^*\otimes T)$ and $\widetilde{D}_4\colon Q^{\tau}_{proj\text{-}proj} \leadsto (T^*,T^*\otimes T^*\otimes T^*)$.

More precisely, the system of operators $(\widetilde{D}_i)_{i=1,2,3,4}$ defines a new sequence of operators $(D_i)_{i=1,...,8}$ (of the type from Lemma 1) such as

$$D_1 := \widetilde{D}_1, \ D_4 := \widetilde{D}_2, \ D_6 := \widetilde{D}_3 \ (modulo \ the \ bijection \ from \ Lemma \ 2)$$

 $D_2 := \widetilde{D}_4, \ D_3 = 0, \ D_5 = 0, \ D_7 = 0, D_8 = 0.$

This system of operators $(D_i)_{i=1,...,8}$ defines the $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator D (by Lemma 1).

Lemma 3 shows that the above assignment $(\widetilde{D}_i)_{i=1,2,3,4} \mapsto D$ is a bijection.

Theorem 1 reduces the classification of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D\colon Q^{\tau}_{proj\text{-}proj} \leadsto QT^*$ to the classification of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D\colon Q^{\tau}_{proj\text{-}proj} \leadsto (T^*,\otimes^p T^*\otimes\otimes^q T)$ for $p=2,\ q=1$ and $p=3,\ q=0$.

Definition 3. An $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D \colon Q^{\tau}_{proj\text{-}proj} \leadsto \otimes^p T^* \otimes \otimes^q T$$

is an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariant family of regular operators

$$D = (D_Y) \colon Q_{proj-proj}^{\tau}(Y) \to C_Y^{\infty}(\otimes^p T^*Y \otimes \otimes^q TY)$$

defined for every $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$, where $Q^{\tau}_{proj\text{-}proj}(Y)$ is defined in Definition 1 and $C^{\infty}_Y(\otimes^p T^*Y \otimes \otimes^q TY)$ means the set of smooth tensor fields on Y.

The $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariance of D means almost the same as in Definition 1, i.e. φ -related connections are transformed into φ -related tensor fields.

Example 4. An example of an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D: Q^{\tau}_{proj-proj} \leadsto \otimes^3 T^* \otimes T$$

is a family $D = (R_Y)$ of operators

$$R_Y \colon Q^{\tau}_{proj\text{-}proj}(Y) \to C^{\infty}_Y(\otimes^3 T^*Y \otimes TY)$$

for any $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$, where $R_Y(\nabla)$ is the curvature tensor of ∇ .

Theorem 2. Let $p \geq q$, $r \coloneqq p - q$. There exists the bijection between the set of all $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D \colon Q^{\tau}_{proj\text{-}proj} \leadsto (T^*, \otimes^p T^* \otimes \otimes^q T)$ and the set of (r+1)-elements sequences $(D_i)_{i=0,1,\dots,r}$ consisting of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators $D_i \colon Q^{\tau}_{proj\text{-}proj} \leadsto \otimes^p T^* \otimes \otimes^q T \otimes S^i T$, i.e. $D_i \colon Q^{\tau}_{proj\text{-}proj} \leadsto \otimes^p T^* \otimes \otimes^{q+i} T$ and $D_i(\nabla)(w_1,\dots,w_p,v_1,\dots,v_{q+i})$ is symmetric with respect to v_{q+1},\dots,v_{q+i} .

Schema of the proof. Consider any $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D: Q_{proj-proj}^{\tau} \leadsto (T^*, \otimes^p T^* \otimes \otimes^q T).$$

Let $\nabla \in Q^{\tau}_{proj-proj}(\mathbb{R}^{m_1,m_2,n_1,n_2})$ and $v \in T^*_{(0,0,0,0)}\mathbb{R}^{m_1,m_2,n_1,n_2}$. We are going to study $D(\nabla)(v)$.

By the non-linear Petree theorem (see [3]) we have

$$D(\nabla)(v) = D(\widetilde{\nabla})(v),$$

where $\widetilde{\nabla}$ is some projectable-projectable classical torsion-free linear connection on $\mathbb{R}^{m_1,m_2,n_1,n_2}$ with Christoffel symbols $\widetilde{\nabla}^a_{bc}$ being polynomials of degree k. Thus we have

$$\widetilde{\nabla}_{bc}^{a} = \sum_{|\alpha| \le k} \nabla_{bc;\alpha}^{a} x^{\alpha},$$

where $\nabla^a_{bc;\alpha} \in \mathbb{R}$ and $x^1, \ldots, x^{m_1+m_2+n_1+n_2}$ is the usual fibred-fibred coordinate system on $\mathbb{R}^{m_1,m_2,n_1,n_2}$.

In short, we write $D(\nabla)(v) = D(\nabla^a_{bc:\alpha})(v)$.

Using the invariance of D with respect to homotheties $\frac{1}{t}id$, $t \neq 0$, we get the homogeneity condition

$$t^r D(\nabla^a_{bc;\alpha})(v) = D(t^{|\alpha|+1} \nabla^a_{bc;\alpha})(tv).$$

By the homogeneous function theorem (see [3]) and by the invariance of D with respect to $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -charts we get that $D(\nabla)(v)$ is a polynomial of degree not higher than r := p - q with respect to $v \in T_y^*Y$, $y \in Y$, for every $Y \in Obj(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2})$ and $\nabla \in Q_{proj-proj}^{\tau}(Y)$.

Thus we have

$$D(\nabla)(tv) = \sum_{i=0}^{r} D_i(\nabla)(v)t^i$$

for some uniquely determined coefficients $D_i(\nabla)(v) \in \otimes^p T_y^* Y \otimes \otimes^q T_y Y$. For every $a \in \mathbb{R}$ we have

$$D(\nabla)(tav) = \sum_{i=0}^{r} D_i(\nabla)(av)t^i$$

and

$$D(\nabla)(tav) = \sum_{i=0}^{r} D_i(\nabla)(v)a^i t^i,$$

hence we get

$$D(\nabla)(av) = a^i D_i(\nabla)(v).$$

It means that $D_i(\nabla)(v)$ is a polynomial of degree i with respect to v and it can be identified with the corresponding element

$$D_i(\nabla)(v) \in \otimes^p T_u^* Y \otimes \otimes^q T_u Y \otimes S^i T_u Y.$$

Summarizing, for every $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator

$$D \colon Q^{\tau}_{proj\text{-}proj} \leadsto (T^*, \otimes^p T^* \otimes \otimes^q T)$$

we defined the sequence $(D_i)_{i=0,1,\dots,r}$ consisting of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators

$$D_i: Q_{proj-proj}^{\tau} \leadsto \otimes^p T^* \otimes \otimes^q T \otimes S^i T.$$

Conversely, analysing the above reasoning, one can see that every $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator $D: Q^{\tau}_{proj-proj} \leadsto (T^*, \otimes^p T^* \otimes \otimes^q T)$ can be reconstructed from the sequence $(D_i)_{i=0,1,\ldots,r}$ of operators

$$D_i: Q_{nroi-nroi}^{\tau} \leadsto \otimes^p T^* \otimes \otimes^q T \otimes S^i T.$$

References

- [1] Doupovec, M., Mikulski, W. M., On prolongation of higher order connections, Ann. Polon. Math. 102, no. 3 (2011), 279–292.
- [2] Kolář, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 67–76.
- [3] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin-Heidelberg, 1993.
- [4] Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math. 101, no. 3 (2011), 237–250.
- [5] Kurek, J., Mikulski, W. M., The natural liftings of connections to tensor powers of the cotangent bundle, AGMP-8 Proceedings (Brno 2012), Miskolc Mathematical Notes, to appear.
- [6] Kuréš, M., Natural lifts of classical linear connections to the cotangent bundle, Suppl. Rend. Mat. Palermo II 43 (1996), 181–187.
- [7] Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen **59** (3–4) (2001), 441–458.
- [8] Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.

Anna Bednarska Institute of Mathematics Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1 20-031 Lublin Poland

e-mail: bednarska@hektor.umcs.lublin.pl

Received June 6, 2012