UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
LUBLIN - POLONIA

WALDEMAR CIEŚLAK and ELŻBIETA SZCZYGIELSKA

Affine invariants of annuli

Abstract. A family of regular annuli is considered. Affine invariants of annuli are introduced.

1. Introduction. We denote by \mathcal{C} a family of all plane, closed, strictly convex and regular curves (of the class C^{1}). It is well known [1], [4] that a curve $C \in \mathcal{C}$ can be parametrized by

$$
\begin{equation*}
z(t)=p(t) e^{i t}+\dot{p}(t) i e^{i t} \quad \text { for } t \in[0,2 \pi] \tag{1.1}
\end{equation*}
$$

where p is the support function of C (the dot denotes the differentiation with respect to $t)$. The tangent vector $\dot{z}(t)$ to C at $z(t)$ is equal to

$$
\begin{equation*}
\dot{z}(t)=R(t) i e^{i t} \tag{1.2}
\end{equation*}
$$

where the curvature radius R of C is given by the formula

$$
\begin{equation*}
R=p+\ddot{p}>0 \tag{1.3}
\end{equation*}
$$

We denote by Λ a family of all 2π-periodic, positive-valued functions $\lambda: \mathbf{R} \rightarrow \mathbf{R}$ of the class C^{1}.

In this paper we will consider a family $\mathcal{C} \Lambda$ of annuli. An annulus $C D$ is an element of $\mathcal{C} \Lambda$ if and only if
1° the inner curve C belongs to \mathcal{C},
2° the outer curve D can be parametrized in the form

$$
\begin{equation*}
w(t)=z(t)+\lambda(t) i e^{i t} \quad \text { for } t \in[0,2 \pi] \tag{1.4}
\end{equation*}
$$

Key words and phrases. Invariant, annulus.
with some function $\lambda \in \Lambda$.
We will use the differential equation

$$
\begin{equation*}
\lambda \dot{\eta}=R \eta-R \tag{1.5}
\end{equation*}
$$

and its solution in the form

$$
\begin{equation*}
\eta(t, c)=1-c \exp \int_{0}^{t} \frac{R(m)}{\lambda(m)} d m \quad \text { for } t \in[0,2 \pi] \tag{1.6}
\end{equation*}
$$

where c is an arbitrary constant.
2. Invariants of annuli. We note that

Theorem 2.1. Let an annulus $C D$ belongs to $\mathcal{C} \Lambda$. The number $c_{o}(C D)$ given by the formula

$$
\begin{equation*}
c_{o}(C D)=\exp \left(-\int_{0}^{2 \pi} \frac{|\dot{z}(t)|}{\lambda(t)} d t\right)=\exp \left(-\int_{0}^{2 \pi} \frac{R(t)}{\lambda(t)} d t\right) \tag{2.1}
\end{equation*}
$$

does not depend on parametrizations of C, D and affine transformations.
For the proof it suffices to note that $\dot{z}(t)=R(t) i e^{i t}$ and $w(t)-z(t)=$ $\lambda(t) i e^{i t}$. It follows from (2.1) that

$$
\begin{equation*}
0<c_{o}(C D)<1 \tag{2.2}
\end{equation*}
$$

Let $c_{o}=c_{o}(C D)$. If $c \in\left[0, c_{o}\right]$, then we have

$$
\begin{equation*}
0<\eta(t, c) \leq 1 \tag{2.3}
\end{equation*}
$$

We consider a family of curves

$$
\begin{equation*}
\mathcal{V}(C D)=\left\{V(c): 0<c \leq c_{o}\right\} \tag{2.4}
\end{equation*}
$$

where a curve $V(c)$ is given by the formula

$$
\begin{equation*}
v(t, c)=z(t)+\eta(t, c) \lambda(t) i e^{i t} \quad \text { for } t \in[0,2 \pi] \tag{2.5}
\end{equation*}
$$

Of course, curves of the family $\mathcal{V}(C D)$ are affine invariants. The inequality (2.3) implies that all curves of the family $\mathcal{V}(C D)$ are contained in the annulus $C D$ and $V(0)=D$. We have

$$
\begin{equation*}
v(0, c)-v(2 \pi, c)=c \frac{1-c_{o}}{c_{o}} \lambda(0) i \tag{2.6}
\end{equation*}
$$

It follows from (2.6) and (2.2) that a curve $V(c)$ is not closed.
For a fixed curve $V(c)$ we have $v(0, c)=w(0)-c \lambda(0) i$ and $v(2 \pi, c)=$ $w(0)-\frac{c}{c_{o}} \lambda(0) i$. It is easy to see that the end point $v(2 \pi, c)$ of $V(c)$ belongs to the segment joining points $w(0)$ and $v\left(0, c_{o}\right)$ if $c<c_{o}^{2}$. It means that if $c<c_{o}^{2}$, then the end point of $V(c)$ is the beginning point of another curve of the family $\mathcal{V}(C D)$.

Figure 1

Theorem 2.2. Let $C D \in \mathcal{C} \Lambda$ and C be a curve of the class C^{2}. The following relations between tangent vectors and curvatures of $V(c)$ and D hold

$$
\begin{equation*}
\dot{v}=\eta \dot{w} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta k_{V(c)}=k_{D} \tag{2.8}
\end{equation*}
$$

Proof. Differentiating (2.5) and using the differential equation (1.5), we obtain

$$
\dot{v}=(R+\dot{\eta} \lambda+\eta \dot{\lambda}) i e^{i t}-\eta \lambda e^{i t}=\eta\left(-\lambda e^{i t}+(R+\dot{\lambda}) i e^{i t}\right)=\eta \dot{w}
$$

Hence we obtain immediately (2.8).
The following theorem explains a geometric meaning of the invariant c_{o}.
Theorem 2.3. Let $C D \in \mathcal{C} \Lambda$. For an arbitrary curve $V(c) \in \mathcal{V}(C D)$ we have

$$
\begin{equation*}
\left|\frac{v(2 \pi, c)-v(0, c)}{v(0, c)-w(0)}\right|=\frac{1-c_{o}}{c_{o}} \tag{2.9}
\end{equation*}
$$

where $c_{o}=c_{o}(C D)$.

Proof. We have

$$
\begin{equation*}
w(0)-v(0, c)=(1-\eta(0, c)) \lambda(0) i=c \lambda(0) i \tag{2.10}
\end{equation*}
$$

The formulas (2.6) and (2.10) imply (2.9).
Remark. Theorem 2.3 is true if we take

$$
\tilde{v}(t, c)=z(t)+\tilde{\eta}(t, c) \lambda(t) i e^{i t} \quad \text { for } t \in\left[t_{o}, t_{o}+2 \pi\right],
$$

where

$$
\tilde{\eta}(t, c)=1-c \exp \int_{t_{o}}^{t} \frac{R(m)}{\lambda(m)} d m \quad \text { for } t \in\left[t_{o}, t_{o}+2 \pi\right]
$$

3. Estimation of $\boldsymbol{c}_{\boldsymbol{o}}$. Let $C \in \mathcal{C}$. We fix $\lambda \in \Lambda$ and we denote by $C(\lambda)$ a curve given by the formula (1.4), i.e. $w(t)=z(t)+\lambda(t) i e^{i t}$ for $t \in[0,2 \pi]$. Let

$$
\begin{equation*}
\lambda_{m}=\min _{[0,2 \pi]} \lambda, \quad \lambda_{M}=\max _{[0,2 \pi]} \lambda, \quad L(C)=\text { length } C . \tag{3.1}
\end{equation*}
$$

The obvious inequality

$$
\frac{L(C)}{\lambda_{M}} \leq \int_{0}^{2 \pi} \frac{R(t)}{\lambda(t)} d t \leq \frac{L(C)}{\lambda_{m}}
$$

implies the inequality for $c_{o}(C C(\lambda))$, namely

$$
\begin{equation*}
\exp \left(\frac{-L(C)}{\lambda_{m}}\right) \leq c_{o}(C C(\lambda)) \leq \exp \left(\frac{-L(C)}{\lambda_{M}}\right) \tag{3.2}
\end{equation*}
$$

We note that
Theorem 3.1. Let $A, B \in \mathcal{C}$ and $L(A)=L(B)$. If the function $\lambda \in \Lambda$ is constant, then

$$
\begin{equation*}
c_{o}(A A(\lambda))=c_{o}(B B(\lambda)) \tag{3.3}
\end{equation*}
$$

4. Special plane annuli. Let S_{m} denote the circle with the center at the origin and the radius m. We consider an annulus $S_{r} S_{\rho}$, where $\rho>r$. We have $\lambda(t)=\sqrt{\rho^{2}-r^{2}}, \quad R(t)=r$ and

$$
\begin{equation*}
c_{o}=c_{o}\left(S_{r} S_{\rho}\right)=\exp \left(\frac{-2 \pi r}{\sqrt{\rho^{2}-r^{2}}}\right) \tag{4.1}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\eta(t, c)=1-c \exp \frac{r t}{\sqrt{\rho^{2}-r^{2}}} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v(t, c)=r e^{i t}+\left(1-c \exp \frac{r t}{\sqrt{\rho^{2}-r^{2}}}\right) \sqrt{\rho^{2}-r^{2}} i e^{i t} \tag{4.3}
\end{equation*}
$$

for $t \in[0,2 \pi]$ and $c \in\left[0, c_{o}\right]$.

Figure 2

Two curves $v(t, c)$ given by (4.3) for $c=0.01$ and $c=0.02$ in a circular annulus formed by two concentric circles with $r=1$ and $\rho=2$ are presented in Figure 2.

Theorem 4.1. Let $C D \in \mathcal{C} \Lambda$. We assume that C is of the class C^{2} and D is a circle. The curvature $k_{V(c)}$ of a curve $V(c)$ is an increasing function.

Proof. Let $t_{2}>t_{1}$. The formulas (2.8) and (1.6) imply the inequality

$$
\begin{aligned}
k_{V(c)}\left(t_{2}\right) & -k_{V(c)}\left(t_{1}\right)=k_{D}\left(\frac{1}{\eta\left(t_{2}, c\right)}-\frac{1}{\eta\left(t_{1}, c\right)}\right) \\
& =\frac{k_{D}}{\eta\left(t_{2}, c\right) \eta\left(t_{1}, c\right)} c\left(\exp \int_{0}^{t_{2}} \frac{R(m)}{\lambda(m)} d m-\exp \int_{0}^{t_{1}} \frac{R(m)}{\lambda(m)} d m\right)>0
\end{aligned}
$$

where $c \in\left(0, c_{0}\right)$. Thus the curvature $k_{V(c)}$ is an increasing function.
Let C_{α} be an α-isoptic of $C \in \mathcal{C}$. We recall that an α-isoptic C_{α} of C consists of those points in the plane from which the curve is seen under the fixed angle $\pi-\alpha$, see [2], [3]. C_{α} has the form
$z_{\alpha}(t)=z(t)+\lambda(t, \alpha) i e^{i t}=z(t, \alpha)+\mu(t, \alpha) i e^{i(t+\alpha)} \quad$ for $t \in[0,2 \pi]$,
where

$$
\begin{equation*}
\lambda(t, \alpha)=\frac{1}{\sin \alpha}[p(t+\alpha)-p(t) \cos \alpha-\dot{p}(t) \sin \alpha] \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu(t, \alpha)=\frac{1}{\sin \alpha}[p(t+\alpha) \cos \alpha-\dot{p}(t+\alpha) \sin \alpha-p(t)]<0 \tag{4.6}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\frac{\partial \lambda}{\partial \alpha}=\frac{-\mu}{\sin \alpha}>0 \tag{4.7}
\end{equation*}
$$

see [3].
We consider a family of all annuli $C C_{\alpha}$ and the function

$$
\begin{equation*}
c_{o}(\alpha)=c_{o}\left(C C_{\alpha}\right)=\exp \left(-\int_{0}^{2 \pi} \frac{R(t)}{\lambda(t, \alpha)} d t\right) \quad \text { for } \alpha \in(0, \pi) \tag{4.8}
\end{equation*}
$$

With respect to (4.8) we have

$$
\frac{d}{d \alpha} \int_{0}^{2 \pi} \frac{R(t)}{\lambda(t, \alpha)} d t=\int_{0}^{2 \pi} \frac{R(t) \mu(t, \alpha)}{\lambda^{3}(t, \alpha)} d t<0
$$

Hence and from the definition of $c_{o}(\alpha)$ it follows immediately that the mapping $\alpha \rightarrow c_{o}(\alpha)$ is strictly increasing.

References

[1] Bonnesen, T., Fenchel, W., Theorie der konvexen Körper, Chelsea Publishing Co., New York, 1948.
[2] Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35.
[3] Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37-49.
[4] Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1. Addison-Wesley Publishing Co., Reading, Mass.-LondonAmsterdam, 1976.

Waldemar Cieślak
Politechnika Lubelska
Zakład Matematyki
ul. Nadbystrzycka 40
20-618 Lublin
Poland
e-mail: izacieslak@wp.pl

```
Elżbieta Szczygielska
Państwowa Wyższa Szkoła Zawodowa
w Białej Podlaskiej
ul. Sidorska 95/97
21-500 Biała Podlaska
Poland
e-mail: eszczygielska@o2.pl
```

