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ABSTRACT 

In this paper e try to reconstruct the spatial distribution of stars in globular clusters 
(GCs) from heuristic statistical ideas  Such 3  radial distributions are important for 
understanding physical conditions across the clusters  ur method is based on con erting 
spherically symmetrical functions such as exp(-r2/s2), exp(-r/s), 1/(1 + r2/s2) 2 and 1/(1 + 
r2/s2)m, (s and m are parameters) to 2  star distributions in a GCs by the Monte Carlo 
method  By comparing the obtained 2  profiles ith obser ational ones e demonstrate 
that Gaussian or exponential distribution functions yield too short extensions of periph-
eral parts of the GCs profiles  The best candidate for fitting GCs profiles has been found 
to be the generali ed Schuster density la : C/ (1 + r2/s2)m, here C is the normali ation 
constant and s and m are adjustable parameters  These parameters display a nonlinear 
correlation ith s arying from 0 1 to 10 pc, hilst m is close to 2  Using this la  the 
radiation temperatures across M 13 and 47 Tucane ere estimated  
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1. INTRODUCTION 

Since the classical in estigations by arlo  Shapley (1885-1972), ho iden-
tified Cepheids and calculated real distances to the globular clusters (GCs) [1], 
these remarkable objects become the most intensi ely studied in the Milky ay 
and in neighboring galaxies. ith the launch of the ubble Space Telescope 
( ST) it as finally possible to resol e indi idual stars in their dense central 
cores. In addition to stars hose presence is expected by the canonical stellar 
e olution theory, se eral more exotic objects like blue struggle stars, -ray bina-
ries, millisecond pulsars, etc., ha e been indentified in Galactic GCs so far, see 
e.g. ref. [2].  

The GCs play a key role in astrophysics, because they may be considered as 
large assemblies of coe al stars ith a common history, but differing only in 
their initial masses, although gro ing e idence for some spread in star formation 
ages is being collected, see e.g. Piotto, 2010 [3]. The spread of star ages is surely 
much shorter than the age of the clusters. It is useful here that stars in a GC may 
be treated statistically ith high degree of confidence. Moreo er, the number of 
GCs in the Milky ay is uite large, close to 160. They differ in mass, lumi-
nosity, total number of stars, and their spatial densities as a function of distance 
from the center. 

The most fundamental characteristics of the GC such as the total number of 
stars, N, and their radial distribution are still poorly kno n due to their extreme-
ly large central densities and slo  gradual transition of their peripherals to ards 
the Galactic background. A better kno ledge of these characteristics is neces-
sary for a proper estimation of the physical conditions in central parts of GCs. It 
is particularly interesting to kno  to hat extent their central temperatures dif-
fer from the present-day background radiation temperature (2.73 ) and hat is 
the temperature gradient across a cluster.  

GCs are the oldest objects in the Milky ay galaxy, of the order of 1012 
years, i.e. large in comparison to a characteristic time-scale o er hich stars lose 
memory of their initial orbital conditions. This is a so-called relaxation time, of 
the order of 107 years according to Chandrasekhar [4]. Therefore, GCs are old 
enough to attain a dynamic e uilibrium and a stable symmetric radial distribu-
tion, pro ided that they ere neither significantly disturbed during the last pass 
through the Galactic disk, nor they collided ith other GCs. hile the GC-GC 
collisions are actually rare, it ouldn t be so ith the passage through the disk.  

The radial distribution of stars is crucial in determining the dynamic proper-
ties of a GC, ho e er, this topic is beyond the scope of this study. It is the pur-
pose of this paper to present step-by-step reconstruction of the 3-dimentional 
radial distributions (3D) of stars in a GC, from the 2-dimentional distributions 
recorded by telescopes. Our approach is based on the Monte Carlo method 
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hich is applied to arious trial functions assumed to be symmetric 3D distribu-
tions. The Monte Carlo method allo s a fast con ersion of the 3D to 2D distri-
bution hich is then compared to that obser ed in the sky. 

2. T EORETICAL CONSIDERATIONS 

e ill start the calculations from the assumption of a 3D Gaussian as a tri-
al function for spatial distribution of stars in a GC, because the Gaussian distri-
bution may be considered as a standard radial-symmetric function to hich other 
distributions may be simply compared. The follo ing physical analogy is rele-
ant to the Gaussian distribution function. 

The diffusion phenomenon may con ert the initial distribution of any parti-
cle system to the Gaussian one, generally ith time-dependent standard de ia-
tion parameter, . or example, a droplet of ink immersed inside a large ater 
pool ill diffuse continuously, and ink density ill attain, due to the chaotic 
motion of ater molecules, a Gaussian distribution ith standard de iation in-
creasing proportionally to the s uare root of time. o e er, hen diffusing 
particles attract each other, the dispersion parameter, , can finally achie e a 
constant alue, just alike in the case of stars distribution in a massi e GC. None-
theless, a lo  mass cluster ill suffer a loss of stars becoming gradually con-
erted to an open cluster, as e.g. M 67 [18].  

De iations of a real distribution from the spatial Gaussian distribution ill 
be considered later on. It is expected, ho e er, that such a de iation ill be a 
rather small correction only to the second and some hat larger to the fourth 
central statistical moment, because of rather high spherical symmetry of all the 
clusters obser ed in the Milky ay (see McMaster Uni ersity Catalog [7,8] for 
eccentricity parameter). Therefore, in the first approximation, the third statistical 
central moment is zero, and only significant moments remain the second ( ari-
ance) and the fourth.  

Consider a reference frame (x, y, z) ith the origin located in the center of a 
cluster and the z-axis oriented out ards a remote obser er. The obser ed distri-
bution of stars in the (x, y) plane being a small section of the celestial sphere is 
the projection of their radial 3D distribution. This projection can be obtained 
from the assumed normal distributions along the three axes. These distributions 
are defined by a common parameter , due to GC symmetry. So, the probability 
to find a star in the range bet een x and x + dx is gi en by the follo ing expres-
sion: 

  = . (1) 
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Similarly are defined dPy and dPz, hence the probability to find a star in an 
infinitesimal box of size dxdydz is:  

 = = . (2) 

No  e can replace the Cartesian coordinates by the spherical ones nothing 
that + + =   sin . 

In order to calculate the probability of a star position bet een spheres of ra-
dius r and r + dr, e ha e to integrate the transformed expression (2) o er the 
angular coordinates  and : 

  = = sin . (3) 

The number of stars, dNr, bet een spheres of radius r and r + dr is:  

 = . (4) 

As it is seen from the abo e formula dNr can be calculated from the total 
numbers of stars, N, in a considered cluster and its characteristic radius hich is 
defined by the standard de iation parameter . Substituting s for 2 , e can 
easily con ert e uation (4) to the follo ing e ui alent form: 

 = 4 . (4a) 

It should be noted at this point that for any spherically symmetric function 
f(r/s), here s is a characteristic distance parameter, the fraction of stars of the 
total number N dispersed bet een spheres of radius r and r + dr may by calcu-
lated in similar ay: 

 =  , (5) 

here =  1/[ ( ) ] is the normalization constant, and u = r/s. 
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FIG. 1. The probability density functions f(x) = dPx/dx considered in this study. 

In this paper e ill consider other spherically symmetric functions as can-
didates for spatial star distribution around a GC center. Therefore, instead of 
e uation (1) for f(x) = dPx/dx e ill consider a double exponential function, 

 = exp(-|x|/s), and the next it ill be a s uared Cauchy distribution func-

tion, = 1/(1+x2/s2)2. The first function is also kno n as the Laplace distri-
bution, hereas the second belongs to the Pearson type VII family probability 
density functions. 

The rationale for using the double exponential function is that the physical 
conditions in a GC ith a massi e black hole resemble the electron-proton inter-
action in the hydrogen atom. The uantum mechanics exactly describes the 
probability distribution of an electron (radial density) in the lo est energy state 
by the double exponential function. This function has 4 times larger ariance, 2, 
and much larger fourth statistical moment, 4, than the Gaussian (see Table 1). 
On the other hand, the s uared Cauchy distribution function has a slightly larger 
ariance than the Gaussian, but the fourth statistical moment is infinite, therefore 

it may be a better candidate for describing a broad star distribution in GCs. Ac-
tually the s uared Cauchy function nicely resembles a Gaussian, except that it 
has a larger o erall dispersion. These normalized functions are sho n in ig. 1 
and their statistical properties are collected in Table 1. All the functions listed in 
Table 1 ill be used belo  as trial functions for their con erting to 2D radial 
densities. 
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TABLE 1. Statistical properties of the normalized distribution functions f(x) considered 
in this study, 2 is the ariance and 4 is the 4-th statistical moment, hich are defined as 
2 ( ) ] and 2 ( ) ], respecti ely, here x = r/s. 
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The s uared Cauchy distribution function is a slightly modified function = 1/(1+r2/s2)2.5, hich is kno n from archi al literature (Plummer 1911 

and Dicke 1939) listed as refs [5, 6]. This function has been obtained as one of 
elementary functions found ithin the solutions of the Emden’s polytropic gas 
sphere e uation 

  + = 0, (6)  

here  is the gas density, r is radial distance,  is the ratio of specifics heats of the 
gas, and b is a parameter. The abo e mentioned function 1/(1+r2/s2)2.5 is strictly 
rele ant for  = 1.2 only, hereas atomic and molecular hydrogen has  alue 1.67 
and 1.40, respecti ely. ence the s uared Cauchy function has rather statistical 
rationale only, and it is not intimately related to the conditions of early gas nebula 
from hich the cluster as formed as it as proposed by Plummer. 

et more general e uation for radial distribution of stars in globular clusters 
is alike double Cauchy distribution, but ith po er treated as an adjustable pa-
rameter. This type of radial distribution is kno n as the po er la  or general-
ized Schuster la  and it as considered by i ko  and Ninko ic [11] as a sim-
ple formula for replacement of the King’s radial distribution in spherical stellar 
systems. 
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3. NUMERICAL CALCULATIONS 

In the next step e ha e to project the assumed 3D distributions onto the x, y 
plane, in order to compare the obtained 2D distributions ith that recorded by 
telescopes. 

or numerical con ersion of any 3D radial distribution to 2D e ill apply 
the Monte Carlo method. The algorithm de eloped for this purpose initially di-
ides the space around the center of a GC into concentric spheres. The first 

sphere has radius r, hilst the radii of the subse uent spheres are increased by 
r. The number of stars Nr bet een t o neighboring spheres, indexed by n and 

n+1, is calculated from e uation (5) for r = rn + ½ r. or each star of the sub-set 
of Nr, the spherical coordinates r and  are randomly dra n from the inter als 
(rn, rn+ r) and (0, 2 ), respecti ely. The coordinate  as calculated from 
arcsin( ) function, the alues of hich ere randomly dra n from the inter al  
(-1, 1). The described procedure creates a uniform star distribution ithin the 
each sphere.  

In the last step of the numerical procedure the Cartesian coordinates (x, y, z) 
of all the stars are calculated from the obtained (r, , ) coordinates. The projec-
tion of the stars onto the planar surface x,y is made by setting z = 0 for all the N 
stars. rom the obtained planar distribution of stars, a 2D radial density function 
is calculated (i.e. GC profile) hich is then compared to obser ations. e adjust 
the parameters C, s and m in order to obtain the best agreement of the plotted 
profile ith that taken from ref. [9] using as a criterion the lo est alue of root-
mean-s uare de iation. The sum of stars dra n in the simulation at optimum 
distribution parameters is treated as the total number of stars, N. 

Normalized radial distribution functions of stars in 3D space, hich ere 
considered in this paper are listed in Table 2.  

TABLE 2. Normalized radial distribution functions applied in this study. 
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4. RESULTS AND DISCUSSION 

In ig. 2a e sho  the 2D star distribution in the x,y plane generated for N = 
7·104 stars distributed in 3D space according to the s uared Cauchy radial func-
tion. This figure sho s the simulated stars distribution in the M 13 (NGC 6205) 
globular cluster, the photo of hich is sho n in ig. 2b for comparison. A cer-
tain amount of eccentricity is seen in the photo of M 13. According to the cata-
log data in refs. [7,8] M 13 has an absolute magnitude - 8.55 M, core radius 0.62 
arc min, and half-light radius 1.69 arc min, the eccentricity 1- b/a = 0.1, here a 
and b are axes of the ellipse o erlapping the cluster core.  

 

 a     b 
FIG. 2. a. The stars distribution in M13 cluster simulated by the Monte Carlo method, 

hile b is a photo of this GC for comparison, source: http:// .osser atoriomtm.it 

 
FIG. 3. The comparison of 2D distribution of stars in modeled M 13 cluster using 3 
different trial functions for 3D radial distribution ha ing identical characteristic size 
parameter, s (the disagreement ith the outermost 3 points of the M13 profile is due to 
the nearly constant 2D density superimposed profile of the Galactic stellar background). 
Each function as normalized for the total number of stars N = 50,000. The obtained 
distributions are compared ith the obser ed distribution by Miocchi et al. [9]. It is seen 
that using the s uared Cauchy function ill lead to a better agreement for assumed larger 
number of stars and size parameter. 
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FIG. 4. The comparison of the con erted 3D distribution, hich is normalized s uared 
Cauchy function 1/(1+r2/s2)2 ith the obser ed 2D profile [9] for assumed larger number 
of stars and optimally adjusted s alue. The obtained 2D distribution fully agrees ith 
the obser ed profile of M 13 cluster. 

ig. 3 sho s the profiles of the projected distributions of stars into x,y plane for N 
= 5·104 stars ith the same size parameter, s, of the follo ing 3D radial distributions: 
(i) Gaussian, (ii) double exponential, and (iii) s uared Cauchy. All these functions 

ere normalized by an appropriate multiplier C to obtain the same total number of 
stars (N = 5·104) and all of them ha e identical dimensional parameter s = 50 arcsec. 

0 2 4 6 8 10

1.4

1.6

1.8

2.0

2.2

2.4

 
 m

s (parsec)
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Although the obtained plots resemble a real- orld obser ed star distribution 
in M 13, hich is plotted as green line in ig. 3 using data from recent study by 
Miocchi et al. [9], neither of them fits ell to the obser ed distribution. The best 
fit is obtained ith the s uared Cauchy distribution, here by arying its s pa-
rameter e can finally achie e excellent agreement ith the obser ed distribu-
tion, as sho n in ig. 4. 

TABLE 3. Results of numerical simulation of 3D star distributions in GCs for those star 
counting profiles ere a ailable (Miocchi et al. [9]). The distance as taken from [8] 

hereas C, m, and s are parameters of formula (9) ere found by the Monte Carlo meth-
od as optimal. The total number of stars, N, is calculated from the fitted 3D distribution 
by counting the stars dra n in the simulation. 

NGC Distance 
[kpc] C N m s [arcsec] s [pc] 

104 4.5 0.21 147100 1.5 30 0.65
1851 12.1 0.0025 4400 1.4 4 0.23
1904 12.9 0.019 6400 1.7 11 0.69
2419 82.6 0.16 11700 2 25 10.01 
5024 17.9 0.07 17100 1.8 26 2.26
5139 5.2 0.26 104100 1.5 200 5.04
5272 10.2 0.17 20900 1.8 29 1.43
5466 16 0.1 4500 2.2 100 7.76
5824 32.1 0.012 1900 1.7 5 0.78
5904 7.5 0.28 35000 1.8 35 1.27
6121 2.2 0.04 13300 1.5 55 0.59
6205 7.1 1.75 89400 2.2 75 2.58
6229 30.5 0.054 3900 2 12 1.77
6254 4.4 0.12 8300 2 60 1.28
6266 6.8 1.4 156000 2.1 55 1.81
6341 8.3 0.025 7300 1.7 18 0.72
6626 5.5 0.01 5400 1.55 12 0.32
6809 5.4 0.18 13300 2.3 150 3.93
6864 20.9 0.021 6700 1.7 6 0.61

 
Although the proposed star distribution in GCs (i.e. s uared Cauchy) is not 

directly related to the dynamics of the system, it seems to be not far from those 
based on mechanical principles [17]. Actually the s uared Cauchy radial func-
tion as considered by us to be more appropriate than Cauchy distribution func-
tion hich has infinite ariance or standard de iation, hereas the s uared Cau-
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chy function has a finite standard de iation. Through its larger dispersion in 
comparison to Gaussian or exponential function it appears to be most appropri-
ate of 3D star distribution in M 13 ( igs 3 and 4).  

o e er, often the best fit to the obser ed profiles leads to the po er la  
function or Schuster density la  [10-12], here the po er m aries from 1.4 to 
2.3 as it is sho n in ig. 5. Studying a sample of Milky ay GCs for hich star 
counting profiles ha e been published recently [9], e ha e noticed an interest-
ing non-linear correlation bet een parameters s and m ( ig. 5). 

In this ay by using the Monte Carlo approach e ha e confirmed a great 
significance of po er-la  distribution function. Though the po er-la  is con-
sidered in literature as ad hoc fitting function [13], in most cases it better fits to 
the obser ation data than King and ilson models [14]. The major eakness of 
this function o er the King model is that it is not dynamically self-consistent in 
the sense that it produces a dynamical e uilibrium. o e er, for the purposes of 
this study the po er-la  radial distribution is fully sufficient , because e do not 
consider star elocities, but their spatial distribution only. 

5. RADIATION TEMPERATURE ACROSS GCS 

e can no  use the Monte Carlo approach to estimate the radiation temper-
ature across a GC. 

Let us assume for this purpose that each star of a GC produces the same 
amount of electromagnetic radiation flux of 1366 /m  (solar constant) at the 
distance of one astronomical unit. According to this simplified assumption the 
radiation flux density from a star at distance ri from a fixed point in the free 
space of GC can be calculated, using formula: 

 
2

2

1366 /m
/1 AUi

ir
 (7) 

The total irradiation flux density  at this point is 
N

i
i , here N is total 

number of stars in the considered GC. The total flux density  of electromagnetic 
radiation determines the temperature T of black body, hich fully absorbs this 
radiation. The relation bet een  and T is described by the Stefan–Boltzmann la  

  = T4, (8) 

here  in formula (8) is the Stefan–Boltzmann constant. Using the abo e t o 
e uations, e can calculate approximately the radiation temperature in the space 
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inside a modeled GC (by the Monte Carlo method) as a function of distance from 
its center. T o examples of such temperature profiles are sho n in ig. 6. 

 

 
FIG. 6. Radiation temperatures (abo e background of 2.7 K) as a function of distance 
from the center of modeled M13 and 47 Tucane clusters (black lines). The spikes in 
black lines are due to proximity to the nearest star, the distances of hich are plotted as 
gray lines. 
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6. CONCLUSIONS 

A critical discussion of the calculations presented abo e leads to a conclu-
sion that 3D radial density of stars is ell described by t o-parameters function 
kno n as the po er-la  distribution or generalized Schuster density la :  

 
2

2
( ) 1

mrf r C
s

, (9) 

here C is the normalization constant, s is the size parameter and m is related to 
the obser ed slope of the star density profile. 

ith this function e ha e calculated present-day radial temperature distri-
bution in the free space inside t o GCs: M 13 and 47 Tucane. The last one, be-
ing one of the largest Milky ay cluster, has the central radiation temperature of 

16 K abo e the present-day Uni erse background temperature (2.7 K). Though 
temperatures across GCs are meaningless in the astrophysical modeling of stars 
e olution, ho e er e suppose that the temperature gradient plays a great role 
of a mop  hich cleans the acuum inside the GCs. Thanks to its action and 
perhaps some gas accretion by hite d arfs, e ha e an ideal insight into the 
interiors of GCs by the ST. Recent density determination of ionized gas (prob-
ably the dominant component of the intra-cluster medium) by radio-astronomical 
obser ations of 15 pulsars in 47 Tucane yields 0.067±0.015 cm-3 only [16]. This 
is about 100 times the free electron density of the interstellar medium in the 
icinity of this GC. Such a lo  density is undetectable by other methods. 
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