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INTRODUCTION

The concept of deformation has extensively been used since 1953 [1] to describe 
’’collective” properties of heavy and light nuclei but up to now very little is known 
about the microscopic structure of deformation. This problem was discussed in 
a shell-model framework [2,3,4]. The common conclusion was that the neutron­
-proton interaction could be essential to the development of collectivity and 
deformation in nuclei. In light nuclei neutrons and protons occupy the same shell 
model levels and this idea is commonly accepted. In such nuclei the deuteron pairs 
( J *  =  1 + , T  — 0) and charge independent pairing pairs (i.e. n — n ,p  — p and n — p 
with J *  =  0+ , T  =  1) are important. The Hamiltonian, containing the pairing and 
isopairing terms, has been diagonalized using e.g. quasispin group SO(8) [5, 6, 7] 
or IBM-4 [8,9].

In heavy nuclei the valence neutrons and protons occupy different shells. So, in 
most of theoretical papers the neutron-proton interaction is neglected or included 
indirectly as the interaction of the n — n and p — p pairs (e.g. as in the quartet 
model [10,11] and IBM-2 [12,13]).

Many years ago [2] it has been shown that, for two nucleons moving in 
a harmonic oscillator potential and interacting via a delta force, the energy of 
the J  =  0 state is minimal for l\ — l2. It can be seen (Fig. 1) that the difference of 
the overlaps of (n \ li j i )  and states

decreases with increasing / if /j =  I2 =  l t l[ =  l, l2 =  / — 1. This means, we 
expect relatively large neutron-proton interaction in heavy nuclei, too. Fig. 2 shows 
some experimental effective interactions in light (a, 6 lines) and heavy (c, d lines)



Fig. 1 . The overlap Fo =  H2 ^ ^ n ? l 2 ^r / r2 ÔI ” a” n\ =  712 =  1 , /] =  h>  ” b” ni =  ri2 =  1 ,
11 2 2 /1 = h  ~ 1

Fig. 2. Experim ental [14] diagonal m atrix elements of nucleon-nucleon interaction. The line ” 
corresponds to ( l / 7 / 2 )2n configuration in 42Ca, "b M — to (1 f ? / 2 )pn in 48S» "c" — to (2£ 9 / 2 ) 

in 210Pb and "d ” — to (1 / 2 )p(2p9/ 2 ) ,L *n 210Bi
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nuclei. Such a picture is typical for other j-levels [14,15]. We can conclude that 
the interaction of two neutrons or two protons is the strongest in J * }T  =  0+ , l  
state and rapidly decreases when J  increases. The result depends on lj values in 
neutron-proton pair:
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for j  =  3 /2 ,5 /2 ,7 /2  and 

for j  =  9 /2 .

In the case j n ^  j p one can find the strongest interaction for larger j  and 
\ln —lp \= 1. As a consequence we see very low-lying 0“ states in the odd-odd nuclei 
(e.g. 0.047 MeV in Bi, 0.002 MeV in Pa, 0.049 MeV in £§2Eu, 0.043 MeV in 
7 6̂Lu and so on) and also low excited 1“ states in the odd-odd and even-even 
deformed nuclei.

Lately [16] the importance of the neutron-proton interaction in generating the. 
nuclear deformation is supported by the self-consistent calculations within the 
Hartree-Fock method with the Skyrme interaction. The conclusion [17], that low­
-lying states (E  <  1.5 MeV) in 218Ra are mostly described by s and p bosons, is 
such a backing in the spdf — IBM model.

Encouraged by experimental data and the results of the papers [16-20], we take 
the strongest interactions in J * T  =  0+ , 1 and 1~ ,0  states and we obtain the model 
with the same group structure as in ref. [21].

In § TH E MODEL we give a sketch of the model, § RESULTS includes the 
results for even 222_228Ra and 226-232^^ jj CONCLUSIONS presents summary 
and conclusions, the appendix contains some details of the calculations.

THE MODEL

In the actinide region the correlation energy of the nucleon pairs is of about 
a few hundred keV. Then, for low excitation energy ( E  < 1 MeV), we will treat 
the nucleon pairs as building blocks of a nucleus [22]. With the above assumption, 
the nucleon pair with quantum numbers of the total angular momentum J ,  the 
parity n  and the isospin T  corresponds to the boson with the same quantum 
numbers. Taking into account the strongest interactions we have six bosons: s j  
with J * — 0+ , T  — 1, ii =  0 ,± 1  and with J * =  1 " , ft =  0 ,± 1 ,  T  =  0. The 
boson s+ corresponds to a pair of nucleons coupled by pairing forces, the boson

substitutes for a neutron-proton pair based on single particle shell model levels 
with \ln -  /p| =  1.

The most general Hamiltonian H  for a system of interacting s and p bosons is: 

H =  €\hs -|- -|- ć3[p +P+]‘/ “ 0,T“ °[pp]00 +  64[s+s+]00[ss]00 +

+  ^ b +p+ ]20[pp]20 +  ć6[s+ s+]02[śś]02 +  £7[p+s+]11[«p]11 +  (1)
4- e8([p+p+]00[ss]00 +  [s+ s+]00[pp]00).

Square brackets denote spin and/or isospin coupling and

T kT k =  ( - 1 ) * ( 2 *  +  1)1/2[T*T*]°; K  =  ( - l ) 1_^ - / i .



The first two terms in (1) represent the familiar pairing and iso-pairing in­
teractions, the subsequent terms —  different effective four-nucleon interactions. 
Hamiltonian (1) conserves the total number of bosons TV =  np +  n 9, total angular 
momentum J  and isospin T.  It can be rewritten in the generators

[P+P]j[=0’l ’2;T=01 \s+ s]'-- :0:T=0’1'2, [p+ s]“ ., [s+p\li ( 2 )

of the unitary group U(6). One from the two possible complete chains of subgroups 
of this U(6)

U(6) D Urip(3) ® Un.(3 ) d SO j(3) ® S 0 T(3) D SOMj (2) ® SOA/r (3) 

provides the basis
\NnpJ  M j T M t ) (4)

in which H  is diagonalized.

RESULTS

The actinide nuclei, containing a 208Pb core with valence protons filling the. 
I/19/ 2 , 2 / 7/ 2 , 1*13/2 and 2 / 5/2 orbitals and valence neutrons in 2g9/ 2) l i n / 2, lj’15/2 
and 2 ĉ5/2 orbitals, are suitable for verifying the importance of the effective neutron­
-proton interaction. Even nuclei of Ra with E(A’\ ) /E {2 \ )  < 3.2 and Th with 
E (4 + ) /E (2 +  ) > 3.2 are chosen for the study.

The Hamiltonian (1) was diagonalized in the basis (4) for the boson numbers 
equal to 1 /2  of the number of nucleons over the core 208Pb and for the isospin 
numbers T  =  Tz for the valence nucleons. From 8 one- and two-boson energies 
only 6 parameters — fi ( c  1 .. .eg) are independent [21]. They were fitted in order 
to obtain low-lying spectra of searching nuclei (Fig. 3 and Fig. 4).

The eigenstates of H

N  or N —l

IN J M j T M t , E ) =  dnp( JT ,E ) \ n p , J M j ) \ N - n p , T M T ) (5)
n p =  J  step 2

make it possible to find the reduced £ 1  and E 2  transitions defined as usual 

B (E \ - ,Ą  -  Jn) =  C2JV +  l ) - 1|(72||B(EA)||y1)|2

with:

=  C'ds+p +  p + i ] " ,  (6)

B , ( E 2 )  =  C 3\p+p\ l  (7)-

Table 1 shows the ratios for reduced probabilities of the electric dipole trans­
itions from the 1“ state (”octupole” ) to the yrast band states. Tables 2 and 3



Fig. 3. The calculated (lines) with parameters (in MeV): Ho = 0, ki = 1.6252, /c2 = —0.010U, 
ko =  —0.0098, A.'4 =  0.1317, k$ =  0.0129, k$ =  0.0581 and experimental (crosses) spectra of 228Th

[23], 230Th [24] and 232Th [25]

Fig. 4. The calculated (lines) with parameters (in MeV): Hi =  0, k\ =  3.1722, =  —0.0146,
k$ =  —0.0218, kĄ =  0.2946, k$ =  0.0212, Are =  0.0333 and experimental (crosses) spectra of 222Ra

[26], 224 Ra [23] and 226 Ra [24]

Table 1. The ratio for reduced probabilities of the electric dipole transitions from the 1”
the yrast band states

state to

B ( £ l , l “  — 2+) 
B (E i  . 1 -  —0+ ) 222 Ra 224 Ra 226 Ra 226Th 228 Th 230Th

exp. [ref.] 2.03 [26] 2.18 [23] 1.85 [24] 1.76 [24] 2.06 [23] 2.33 [28] 
1.72 [29]

calc. 2.37 2.17 2.60 2.13 2.24 2.30



Fig. 5. The average number of J  =  1, T  = 0 pairs in the ground state, 1"
against the mass of ^Th

state and Oj state

Table 2. Reduced probabilities of E 2 transitions 0 g 3 —► 2*  in ^Ra nuclei

f l (£ 2 ,0 +  2+) 
(e2f>2) 222 Ra 224 Ra 226 Ra 228 Ra

exp [27] 4.52±38 3.99±16 5.13±28 6.01 ±49
calc. 3.34 4.09 6.43 7.01



Table 3. Reduced probabilities of E 2 transitions 0  ̂ 5 —► 2* in ^Th nuclei

B { £ 2 ,0 +  — 2+)
(e’ 6’ ) 226 Th 220 ̂ 230Th 232 Th

exp [27] 6.85±40 7.07±27 8.04±10 9.28±9
calc. 4.80 6.58 8.18 10.14

contain the reduced probabilities of E 2  transitions 0+5 —* 2*  in 4 Ra and ^Th  
nuclei.

The calculated values were obtained with the parameter C 2 =  0.200e262. Table 4 
and Table 5 show the ratios for the reduced E 2 and E l  probabilities but only for 
230Th compared with the latest experimental data [29].

Then, we calculate the average number of p  and s bosons in any state

"  =  ! > » , ( • / .  r , £ ) | V  (8)
n,

Fig. 7. The average number of o-cluster in the ground state and
the same values of n0 as in O* state

state. We obtain in 1 state

Table 4. The ratios for reduced probabilities of the quadrupole transitions from some (3-band states
to the yrast-band states in 230 Th

j 3 B(E2,J@ —> J g) / B ( E 2 , J 0 ^ J ' a)
exp. [29] calc. A laga

2 2 0 2.31±0.31 1.58 1.42
2 2 4 0.58±0.10 0.35 0.55
2 4 0 3.44±0.51 4.33 2.57
4 4 2 2.06±1.41 1.01 0.91

One can estimate also the average number of a-like clusters



Table 5. The ratios for reduced probabilities of the electric dipole transitions from some octupole 
states to the yrast-band states in 230Th

J O C i h J i B ( E l , J ocl ^  J g) / B ( E 2 tJ Q“  -  J'Q)
exp. [ref.] calc. ref. [18]

1 2 0 2.44 28 2.30 2.30
1.72 29
2.15 30

3 4 2 1.95 28 1.86 1.78
1.61 29

5 6 4 3.17 28 2.08 2.04
2.08 29

Fig. 8. o-clustering in some states of the K n = O f , Oj and bands in 230Th

Fig. 9. Percentage of neutron-proton pairs in some states of 230Th



where lj means the average number of bosons not coupled in J  =  0, T  =  0 pairs and 
it can be extracted from a given eigen-energy of (1) [21]. Figs. 5 and 7 show that 
the ground state and octupole 1" state in the studied ^Th nuclei have very similar 
neutron-proton and a-like structure. This is consistent with the remark [31] that 
the ground states of heavier ''T h  can be octupole-deformed. The fact that reduced 
width for a-decay is nearly constant in the well-deformed actinides implies that the 
number of ”a-clusters” in the ground states is nearly constant. The calculations 
confirm this mention, too (Fig. 7). It is noteworthy that our results (Table 5 and 
others) are similar to the ones obtained in the paper [18] in which and d
bosons are included in the model with U3(f(6) ® U3p(4) group structure. We can 
see in Figs. 8 and 9 that within a given band ( K *  =  0 * ,0 f  and O^) of 230Th 
the average number of neutron-proton pairs np slowly increases with increasing J :  
simultaneously, n a slowly decreases. In every case we obtain more neutron-proton 
pairs than neutron-neutron and proton-proton pairs, a similar result was obtained 
in the paper [17] and in our earlier calculations for the light [33] and rare earth 
[20] nuclei. It can follow from larger range of the neutron-proton interaction in the 
5 = 1  states. Further calculations in the actinide region are in progress.

CONCLUSIONS

Experimental data and many successful calculations in different versions of the 
interacting model confirm that for low excitation energy the nucleon pairs can be 
treated as building blocks of a nucleus. By the above assumption and taking into 
account the most interacting pairs with J * , T  =  0+ , l  and 1” ,0  we are able to 
reproduce the experimental energies and the reduced probabilities of E 2 and E l  
transitions in even Ra-Th nuclei. It is interesting and unexpected that in every case 
of deformed nucleus (light [33]) rare earth [20] and actinide nuclei), we obtain over 
50% of p-bosons even in the ground states! This suggests that the neutron— proton 
interactions can be of an origin of collectivity and deformation in any nucleus. These 
aspects (collectivity and deformation) are the most pronounced in the actinide 
region where valence neutrons and protons can fill many single particle levels with 
large j  and j n =  j p ±  1.

APPENDIX

We start, for N -boson system, from the total symmetric [N 00000] irreducible 
representation (IR) of U(6) group generated by operators in (2). This IR contains 
only total symmetric IR ’s of Unp(3) <8> Un,(3 ) (or its subgroup SUnp(3) <g> SUn#(3) 
and

[AT00000]= ( " p . ° ) ® K . 0 ) .  (10)
np int

np + na=7V



Correctness of the reduction in (10) can be checked by comparison of dimensions 
of IR ’s:

dimuMlWjW^g] = ("||/_~,}|)!- (ID
5 - 1

Three quantum numbers distinguish states within IR (Xfi) of SU(3). They are:

K  =  min{A, //} ,  min{A, /*} — 2, . . .  1 or 0,

j  _  ( A', A' +  1, • . - K  +  max{A/x} for K  /
\ m ax{A /i},m ax{A ^} — 2, . . .  1 or 0 for A' =  0,

M j  — t/, J  — 1 , . . . ,  —J  +  1, —J .

According to (10) all states of the basis (4), and as well calculated eigenstates 
of Hamiltonian (1), have K  =  0. K  has not any physical meaning and for IR ( ,  0) 
is not necessary but in Fig. 3 (and later) I\i =  0* with i =  1 , 2 , . . .  is conserved as 
a sign of a band: 0i signifies yrast line, O2 — next higher energy and so on.

Table 6. Classification scheme for the group chain (3) and N =  8

np J n 9 T
8 8, 6, 4, 2, 0 0 0
7 7, 5, 3, 1 1 1
6 6, 4, 2, 0 2 2, 0
5 5, 3, 1 3 3, 1
4 4, 2, 0 4 4, 2, 0
3 3, 1 5 5, 3, 1
2 2, 0 6 6, 4, 2, 0
1 1 7 7, 5, 3, 1
0 0 8 8, 6, 4, 2, 0

Table 7. Experimental [23] and calculated relative ground state part of the spectrum
together with an(0 2 ,£ )

224 Ra

E  exp 
MeV calc.

0 . 0

0 . 0

0.92
0.94 2.20 6.59

Tip —  0 0.007 -0.006 0.063 0.998
Tip  — 2 0.162 -0.120 0.977 -0.064
rip =  4 0.906 -0.375 -0.196 0.004
Tip — 6 0.391 0.919 0.048 0 . 0 0 0

The calculations are very simple in spite of the large basis (4) because the 
matrix of H  is quasidiagonal in J  and T\ an energy is independent with M j  and 
M t  and the eigenstates of H  with even (odd) J  are built from the states with 
Tip =  J , J  +  2 , . . .  N  or jV — 1. For example in the case of 224Ra with N  =  8 and 
T  =  2, we diagonalise the following matrix: 4 x 4 for J  =  0+ , 3 x 3 for 2+ , 2 x 2 for 4+ 
and 1 x 1 for 6+ . Next dimensions of H  matrix for Af =  8 can be seen in Table 6. 
Six parameters are fitted to yrast states with J * =  2+ , 4 + , 1” and 3“ of a few



nuclei with T / N  < 1/3.  For higher T / N  we obtain too small moment of inertia 
because we limit fip/N .  Table 7 presents a n( J  =  0 , T  = 2 ,  E )  for the 0+ states of 
224Ra. We see, the 0+ states with higher energy have more neutron-neutron and 
proton-proton pairs than low-lying ones.

PACS numbers: 21.60.Fw; 26.90-|-b
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