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INTRODUCTION

The Generator Coordinate Method (GCM) proposed many years ago by 
G r i f f in ,  H i l l  and W h e e le r  [1] has been extensively used in many problems of 
nuclear physics e.g. see [2,3]. It is a fully quantum mechanical method that allows 
to investigate the nuclear collective motion by means of a very general ansatz for a 
trial function. It is a continuous superposition of the so-called generating functions 
\q) labelled by some number of real or complex parameters q =  {ql , q2, ..., qr , known 
as the generator coordinates. For every q the generator function is a vector in the 
many-body Hilbert space. The trial function is expressed by a multidimensional 
integral:

\V) = j  dqu(q)\q). (1)

The standard variational principle leads to the very well known Griffin-Hill­
-Wheeler integral equations for the weight function ti(g) and collective energies. On 
the other hand, the GCM method can be treated as a kind of a projection technique 
that allows to construct a full collective space from a generator function [4]. In the 
present paper we follow the last idea.

For hot nuclei the ansatz (1) is not sufficient. It does not allow to introduce any 
temperature dependence into the formalism. The states (1) are pure states in the 
quantum mechanical sense but we need to generate the collective space from a given 
temperature, deformation and other characteristics dependent density matrix.

The way to this goal is proposed in this paper for the special case of rotational 
excitations (the method can be directly generalized to any arbitrary compact group 
of motion) extracted from a general quadrupole collective motion described by the 
dynamical symmetry group SU(5). This group of motion is the known symmetry 
group of the Bohr hamiltonian generated by the bilinear forms of quadrupole boson



operators. Using this simple model we will show a behaviour of rotational spectra 
of the five dimensional harmonic oscillator, the Bohr hamiltonian, simulating, in 
a simple way, spectra of some nuclei. Using the algebraical Gelfand-Najmark- 
-Segal construction (GNS) [5,6] we construct a collective space generated from 
a fixed temperature dependent density matrix of our quadrupole bosons. The 
generator coordinates (the collective variables), that are needed for observation of 
the collective rotational motion, we introduce by means of the group SO(3)cSU(5).

The method that we call the algebraic generator coordinate method (AGCM ) 
allows for investigations of quantum systems with some constraints imposed by the 
symmetries. In this case we constrain the full quadrupole motion to the collective 
rotations only. The constraint, imposed by the rotational group SO(3) contained in 
SU(5), permits to obtain in a fully quantal way (without quantization) rotational 
states generated by an arbitrary SU(5) generating hamiltonian. The procedure is 
state dependent and gives different spectra for different functionals of a state, (called 
also the metastates, in the sense of states defined in C* algebra approach to quantum 
mechanics, see [7,5,6] and references therein). For the case when the metastate is 
defined by a density operator which is only dependent on the SU(5) generating 
hamiltonian (e.g. a canonical density matrix) one can construct the rotational 
collective space and the corresponding rotational hamiltonian. The structure of 
the spectrum obtained by this procedure is dependent on the parameters in the 
metastate. For the canonical density operator one can observe a changing of 
rotational spectrum with the parameter corresponding to the quadrupole boson 
temperature of the system.

THE RO TATIO NAL COLLECTIVE SPACE FOR SU(5) D YNAM ICAL SYM M ETRY

In this case the method starts from the investigation of the formal integral 
operators

/ dgu(g)T(g)  (2)
JG

where the functions u E L7(G ), T(g)  is the unitary representation of the group 
G=SO(3)cSU(5) in a carrier space 7i of unitary, totally symmetric representations 
of the group SU(5) and dg is the Haar measure on G. The operators (2) form the 
•-algebra, where the involution operation is defined as the hermitian conjugation. 
Now, having a given density operator p it is neccesary to consider the eigenproblem 
for the generalized overlap operator b[p\

(Afpum){g) =  f  dg {p\ T ( g - Xg'))um(g') = \(m)um(g), (3)
JG

where (p ;) denotes the metastate, that for our purpose will be defined as the 
appropriate trace operation from the product of the density matrix p and the 
required operator 5, i.e. (p; S) =  Tr(pS). Because Mp is well defined the hermitian 
compact operator its eigenfunctions span the whole space L 2(G)  and each element



of the algebra 7Z can be expressed as a series of the following basic elements

/ dg um(g) T(g). (4)
Jg

By GNS construction [5,6] one can obtain the corresponding state space /C in 
which the algebra 71 acts in a very natural way. This state space JC is a generalization 
of the collective state space of the standard GCM (Generator Coordinate Method) 
procedure. Both construction AGCM and GCM are equivalent when a metastate 
in the first method is defined by the mean value, i.e. p =  |<f>)(<j>: ‘

(<f>\T(g)) =  (<i>\T{g)\4>), (5)

where T(g)\<j>) is a generator function for GCM approach. For the metastate defined 
by a quantum mechanical density operator there is no corresponding standard GCM 
construction. In this sense AGCM is a generalization of GCM. *

The elements of the states space 1C are in fact classes of equivalent algebra 
elements (denoted in further text by cl()) with respect to the functional (p ;): each 
class contain the elements which differ from each other on a null element (i.e. an 
element of the algebra which is indistinguishable by the state functional from zero 
element of the algebra). Those null elements furnish the subalgebra generated by 
the operators (4) related to all m’s for that the eigenvalues A(m ) of the overlap 
operator Mp are equal to zero, i.e. A(?n) =  0. This means that the space /C is 
spanned by the following basic vectors:

em =  J ——clKi(Pm), for A(m) ^  0. (6)
\/A(m)

The scalar product in K is defined now as:

(cU (S)|cl^(/?)) =  (p ;5+ fl), (7)

where 5 and R are elements of the group algebra 71. This way (after the standard 
procedure to complete the pre-Hilbert space defined above) one obtains the states 
space 1C for a collective motion generated by the group G. In addition the metastate 
constrains the motion to the one that can be obtained by excitations of the density 
operator defining (p;).

For the totally symmetric irreducible representations of the group SU(5) the 
carrier space 7i is spanned by the states labelled by five quantum numbers 
\NvxLM\), where N  is the number of quadrupole bosons, v denotes the seniority 
number, x can be interpreted as a maximal number of boson triplets coupled to 
zero angular momentum, and L and M  are the usual angular momentum quantum 
numbers [8].

The state functional (the metastate) is chosen in the form of trace in the space 
7i from the product of the density operator p and a needed operator 5:

(p; S) — TVsu(5)(S  • p) — Y ,  (NvxLM\S p\NvxLM). (8)
NvxLM



Let us denote by p(NvxLM) = (NvxLM\p\NvxLM) and assume that the 
density operator p is axially symmetric, i.e. it is invariant under rotations around the 
2-axis. For simplicity we consider only a class of hamiltonians H that are diagonal 
in the basis \NvxLM) i.e.

H\N vxLM)  =  E(NvxLM)\NvxLM).  (9)

This case corresponds e.g. to the standard five dimensional harmonic oscillator 
and to so-called vibrational limit of the IBM model [9].

The action of the overlap operator M  can be now written:

(A / » ( f i )  =  / rfn,T rsu(5)(ftso (3 )(fi-1n ') • P M V )  =
J SO(3)

=  V  / dQ'(NvxLM\p •/?so(3) (^ ,)|Ar^^M )t/ (Q Q ') =  (10)
NvxLM Js° ( 3)

= Y ,  p(NvxLM) [  dn’D k M(V)u(nn' ) ,
NvxLM JsO(3)

where i?so(3) (^ ) is the rotational operator with the Euler angles Q, Qfi' denotes 
the Euler angles corresponding to the composition of two rotations #so (3) (^ )  
and Rso(3)(W)- After some straightforward calculations, making use of invariance 
property of the Haar measure the eigenvalues and eigenfunctions of the overlap 
operator can be found in the analytical form:

A(LK)

ULMk (Q)

E p ( N v x K )

2 L + 1IV vx

V2LT~\Dl ,; k (Q).
( 11)

By insertion of egs. (11) into (6) one obtains the basis for the state
dependent collective rotational space projected from the full SU(5) carrier space 
of totally symmetric representations including possible equivalent representations. 
Now one can calculate the matrix elements of the hamiltonian H\

H ( L ‘ M ' K ' ) ( L M K )  =  ( e M>K'\e M K ) =  ^  H  ' P M  k ) - ( 12)

In our case of hamiltonians diagonal in the group chain SU(5) d SO(5)d SO(3) 
the formula simplifies:

= ^ 7 ) A ( lT )  T,B{NvzLM)p(NvzLK),  (13)

and for the rotational energy one gets the expression:

£TOt ( L M  K )
J2nvi E(NvxLM)P(N v x L K )  

E NvtP(N vxLK)
(14)



The formula (14) describes, in general, rotation A-bands and M  dependent ener­
gies for hamiltonians containing the third component angular momentum operator 
Lz- The Ar-bands can be not degenerated in K for the density operators depen­
dent on Lz-

THE TEM PERATURE DEPENDENT FIVE DIMENSIONAL HARMONIC OSCILLATOR

In the nuclear physics the 5-dimensional harmonic oscillator simulates main 
feature of the collective quadupole motion. We consider here a temperature depen­
dent rotational motion within the SU(5) model. To this goal we choose the density 
operator in the cannonical form:

p =  Z-1 exp( - (3Hgen), 0 =  j L ,  Z =  7>SU(5)(p ), (15)

where the generating hamiltonian we choose as the 5-D harmonic oscillator hamil­
tonian H =  hu)(N -I- 5/2) plus any function of L2 and L0 operators:

//gen =  hu(N +  5/2) +  f ( L 2, L0) =  huN + f ' ( L 2,L 0). (16)

The selection rules for the quantum numbers are the following [8,9]:

N =  0,1,2,..., oo, 
v = N, N — 2, /V — 4,...,0 or 1,

0 < x < v/3, 
v — Zx < L < 2{v — 3x),

L Ć 2 ( v - Z x ) - \ .

The multiplicities sjvl of the states for given N  and L, and all possible v and 
x, are given in the Appendix. There are listed the multiplicities s/vl for A < 21 
and N < 31. Using these coefficients the rotational energies can be rewritten as:

52N sNL(huN -f- b/2hu)exp[-/3hLjN -  (3f(LK)\ _
E at snl exp[-/?fiuAr -  0f' (LK)\

t W^[T,NsNLexp(-aN)]  5 t
—hu—^ ------------ :-----77T---- h

2̂ /v snl  exp( -aN)  2

where a =  fihuj. This expression describes the temperature dependent rotational 
spectrum projected out of the considered harmonic oscillator. This spectrum, 
as it could be expected, has no special regularities typical for rotators because 
of strong coupling between the rotational and vibrational degrees of freedom in 
H. However, one needs to remember that the group G =  SO(3) constrains the 
hamiltonian H and reduces degrees of freedom of the system to three angles of 
rotations only. To some extent it is a quantum analog of a separation of the 
rotational and vibrational energy in the Bohr hamiltonian [10]. The results are 
different because in the Bohr model case the separation is performed first and then

£rot(0)LK =



the obtained classical hamiltonian is quantized; in our case the whole quantum 
spectrum is analysed in terms of different motions. We check if a given energy 
level survives after reduction of the state space to the required type of motion. 
In the formula (17) one can also notice that in the generating hamiltonian a 
dependence of //(L 2,L 0) is irrelevant. This means that adding to //gen a pure 
rotational hamiltonian changes neither the collective space nor eigenenergies. This 
type of ‘gauge’ symmetry of the generating hamiltonian is an interesting feature of 
the formalism and probably is of a general^nature. This problem requires further 
investigations.

In the Appendix there are shown the analytical formulas for the rotational 
energy £rot for L < 8. One can notice that for each temperature the spectrum 
corresponding to odd angular momenta is shifted by a constant value in respect to 
even angular momenta states, namely:

£rot(£ + 3) — £rot(£) = 3/k j. (18)

In the vibrational nuclei like 106Pd the energy of the first 3+ state is just 3hcj 
above the ground state corresponding to L =  0. The relation (18) suggests that 
also for T  > 0 case, i.e. for the hot quadrupole boson gas this pair of states should 
have the same splitting.

Fig. 1 shows the temperature dependent rotational spectrum relative to L =  0, 
i.e. £rot(0) =  0 for each temperature T. One can see that instead of three metastate 
parameters taken primarily: T, u and an arbitrary function f ' ( L M )  we obtain 
only one parameter dependence: the function f ' ( L M )  vanishes and u and T  are 
coupled together so that u is in fact only the scaling factor of the temperature T. 
In addition, the energy is degenerated in K  because there is no dependence of p or 
the hamiltonian of the system on a third component angular momentum operator.

$
s
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Fig. 1. The relative to L — 0 level 
temperature dependent rotational 
spectrum of five-dimensional har­
monic oscillator is plotted

The T  — 0 case is of great interest here. The spectrum for zero tempera­
ture is obtained as the limit of the expression (17) calculated with T  —► 0+ .



Direct use of the density operator p for T  =  0 to generate the rotational spec­
trum of the 5-D harmonic oscillator gives no efTect because this state is the ro­
tationally invariant state vector with the total angular momentum L — 0 and by 
rotations one can obtain only this ground state itself. This analysis shows that 
using of more general metastates than those that are determined by the pure 
states allows for generation of the rotational spectra even for undeformed nu­
clei. For 5-D h.o. with T  — 0 the SO(3) spectrum is described by two simple 
sequences:

r  = o) = hu)(\L +  5/2); L =  0,2,4, ... 
M § ( £  +  3) +  5/2);L =  3,5,7,

(19)

Fig. 2. In the figure the separation of the SO(3) (rotational) spectrum, T  =  0, from the 5-D 
harmonic oscillator with comparison to the experimental spectrum of 106Pd, hu> =  0.58 MeV,

is shown

In Fig. 2 there are shown SU(5) and SO(3) spectra for the boson temperature 
T  — 0. The states that survive after reduction of the full harmonic oscillator to 
only 3 rotational degrees of freedom consist of the boson configurations having the 
lowest number of bosons that can be coupled to required angular momenta, i.e. 
for an even angular momentum L = 2N , N = v and x =  0 and for an odd one 
L = 2N — 3 with the same relations for the seniority number v and the maximal 
number of boson triplets x. The rotational spectrum for T  =  0 is equidistant like 
vibrational one. For T)0 one can observe doublets (L, L — 1) with even L — 0,2,4, ...



These doublets are also practically equidistant. The levels of odd L are degenerated 
with levels of L 4- 3 for T  = 0  and with L +  1 for T  =  oo. For T)0 each level is 
(2L +  l ) 2 times degenerated, for T  =  0 the levels with L > 3 have degeneracy two 
times higher.

We mentioned above that for T  =  0 the levels which survive after blocking 
other degrees of freedom than those allowing for the rotational motion have the 
possible lowest energy for the given angular momentum. The question arises what 
the structure of these rotational levels for T)0 is. This problem leads to another 
property of the AGCM formalism that allows to represent the state vectors obtained 
in one collective space into another collective space which can be constructed 
from the algebra of the operators (2) but with G=SU(5) and eventually different 
metastates. This feature of the formalism enables to consider the phenomena whose 
description, in general, requires the variable state spaces. Returning to our problem 
one can immediately see that the solution of the overlap operator eigenquation (3) 
for G =  SU(5) can be written thus:

A s v ^ N v 'x ' L 'K )
p iNv'x 'L 'K )
dimSU(5)[W]

ydmisu(5)[W] D^xLM v,x,L,K (g),

(20)

where D-function denote the matrix elements of the irreducible representations of 
the group SU(5). Using the eigenfunctions (20) the corresponding collective space 
of the 5-D h.o. is spanned by the basic vectors (6) denoted now for the given boson 
temperature T  as:

eN
vxLM . t 'r ' L‘ K (T). ( 2 1 )

The rotational states e^K (T)  for the temperature T  can be expanded in the 
basic vectors (21). After some algebra one can get that the corresponding rotational 
vectors within the five dimensional harmonic oscillator space are given by the 
formula:

eLMK ( T ) ^ e SLV̂ ( T )  =

= •) 5 Z p(NvxLK\T)
KNvx

- 1/2

Y ^ p (N v x L K ; T ) l/2e ^ LMyxlLIK(T).
Nvx

( 2 2 )

The energy calculated with the states (22) is given by the expression (14). 
On the other hand the eigenenergies of the 5-D h.o. within the space spanned by 
the vectors (21) are obviously independent of the temperature and are given by 
the usual formula hu(N -f 5/2). This allows to interpret the squared expansion 
coefficients in eq. (22) as the occupation probabilities of the harmonic oscillator 
states:

PvxL M k ( T )
p(NvxLIi\T)

Y.n»xP(NvxLK\T)
(23)



To exemplify a typical behaviour of the occupation probabilities one can obtain 
the analytical formula from the expression (23) for the special case of the angular 
momentum L — 2 (with the help of eq. (A2, Appendix)):

Pv.c-2Mh'(T)
yN~ [ ( i  -  y3)2

1 +  !/ +  r
for N  > 0. (24)

where \j — exp(hu/kT). In Fig. 3 there is plotted the occupation probability 
function (24). One can notice that for the lowest allowed shell, i.e. for N = 1, 
for T  =  0 the function (24) is equal to 1 and it is a decreasing function with 
T  while other energy levels at this moment are unoccupied and their occupation 
probabilities vanish. The probability functions (24) for ;V > 1 have a characteristic 
shape with a single maximum.

^  _______I______ - ____ I______________ I-------------------- L
1 2  3 4 5

Boson Temperature [MeV]

Fig. 3. In the figure some examples of the occupation probability functions for L ~  2 and different
shells arc plotted

The above analysis suggests the idea of the spontaneous thermal transitions. 
The transitions can go along the line with the same angular momentum from the 
rotational state with higher temperature to the lower one. These thermal transitions 
should be similar to the nuclear giant, resonances. The 5-D harmonic oscillator 
model is too schematic to perform more realistic considerations that will be a topic 
of further work.



Fig. 4. The AGCM group theoretical classification of the spectrum for 110CV1. The vibrational 
limit of the IBM model hamiltonian has been used [9] (not described in the text)

CONCLUSION

In this paper, we have demonstrated some basic results of using of the AGCM 
method for the construction of a collective subdynamics in terms of motions 
generated by certain groups of motions. Explicitly we have tlone this for rotat ional 
motion generated from the five dimensional harmonic oscillator. These preliminary 
results indicate the fact, that spectra and in general spaces of quantum states 
of constrained systems are not constant and can change with some external 
parameters, e.g. with deformation or temperature of t he system. On the other hand 
the AGCM approach allows for a new type of group theoretical classifications of 
the collective spectra: one can investigate invariance of given collective excitations 
in the degrees of freedom reduction procedure to the required type of motion. 
Here we have considered only t he rotational subgroup of the group SU(5), but also 
the subgroup SO(5) is of great, importance. The idea of transitions between the



collective spaces corresponding to different, deformations or temperatures requires 
also further investigation within more realistic models than presented in the paper.

APPENDIX

Tin-
n\ l
0

mull iplirity > 
0 1 2  3

' Y f 
4

of the stat< 
5 6 7

ns 1 
8

V v . r l A I )  for given V 
9 10 11 12 13 14

and L-.
15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 2 0 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
S 1 0 2 1 2 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0
6 2 0 2 1 3 1 3 1 2 1 1 0 1 0 0 0 0 0 0 0 0
7 1 0 3 1 3 2 3 2 3 1 2 1 1 0 1 0 0 0 0 0 0
8 2 0 3 1 4 2 4 2 4 2 3 1 2 1 1 0 1 0 0 0 0
9 2 0 3 2 4 2 5 3 4 3 4 2 3 1 2 1 1 0 1 0 0

10 2 0 4 1 5 3 5 3 6 3 5 3 4 2 3 1 2 1 1 0 1
11 2 0 4 2 5 3 6 4 6 4 6 4 5 3 4 2 3 1 2 1 1
12 3 0 4 2 6 3 7 4 7 5 7 4 7 4 5 3 4 2 3 1 2
13 2 0 5 2 6 4 7 5 8 5 8 6 7 5 7 4 5 3 4 2 3
14 3 0 5 2 7 4 8 5 9 6 9 6 9 6 8 5 7 4 5 3 4
15 3 0 5 3 7 4 9 6 9 7 10 7 10 7 9 7 8 5 7 4 5
16 3 0 6 2 8 5 9 6 11 7 11 8 11 8 11 7 10 7 8 5 7
17 3 0 6 3 8 5 10 7 11 8 12 9 12 9 12 9 11 8 10 7 8
1 8 4 0 6 3 9 5 11 7 12 9 13 9 14 10 13 10 13 9 12 8 10
1 9 3 0 7 3 9 6 11 8 13 9 14 11 14 11 15 11 14 11 13 10 12
20 4 0 7 3 10 6 12 8 14 10 15 11 16 12 16 12 16 12 15 11 14
21 4 0 7 4 10 6 13 9 14 11 16 12 17 13 17 14 17 13 17 13 15
22 4 0 8 3 11 7 13 9 16 11 17 13 18 14 19 14 19 15 18 14 18
23 4 0 8 4 11 7 14 10 16 12 18 14 19 15 20 16 20 16 20 16 19
24 5 0 8 4 12 7 15 10 17 13 19 14 21 16 21 17 22 17 22 17 21
25 4 0 9 4 12 8 15 11 18 13 20 16 21 17 23 18 23 19 23 19 23
26 5 0 9 4 13 8 16 11 19 14 21 16 23 18 24 19 25 20 25 20 25
27 5 0 9 5 13 8 17 12 19 15 22 17 24 19 25 21 26 21 27 22 26
28 5 0 10 4 14 9 17 12 21 15 23 18 25 20 27 21 28 23 28 23 29
29 5 0 10 5 14 9 18 13 21 16 24 19 26 21 28 23 29 24 30 25 30
30 6 0 10 5 15 9 19 13 22 17 25 19 28 22 29 24 31 25 32 26 32

The‘ c,ale u late the energy OIK■ lias to lind the vaim■ of the formula.:

0 =  £ . W n'v . ( A l )
,V = 0

To do that one needs to find a regularity in sy^ for each L separately and use 
the well-known formulae:

yv=o

1
1 -  c~rt

CO
and Are~ayV

jV  =  0

e. a

We will demonstrate it for one of the simplest cases, L =  2, where syi  form a 
series:

N  1 2  3 4 5 6 7 8 9 . . .
s y L 0 1 1 1 2 2 2 3 3 3 . . .

We proceed:

0L = 2 Y  sN2e~aN =  Y se~ a{3' ~ l) +  Y se~ a(3' ~ 2) +  Z ^ se" 3aj
N-0 5 = 0 5 = 0 (A2)

=  Y ^ 3a9( l  + e n +  e2rt)
5=0

e~a -f e~~n +  e-3a 
(1 -  e -3" )2 '

o5



After some transformations we get the analytical formulae for the rotational 
energies. For simplicity we use the abbreviation:

x = exp
hu)
kT

For the lowest angular momenta from L =  0 to 8 we find in the units hu>:

£rot(0)

6ot(2)

£rot(3)

£ro.(4)

f,ot(5)

^•ot(6)

£,ot(7)

^,ot(8)

5 +  5x +  4x2 +  5x3 +  5x4 
2(x -  1)(1 +  x )( l  +  x + x-)
1 +  2x + 2x2 +  7x3 

2(x -  1)(1 +  x +  x2)

— 1 — x +  4x2 +  l l x 3 +  l l x 4 
2(x — l)(x  +  1)(1 +  x +  x2) 

—3 +  2x +  9x2 
2 ( x -  l ) ( x +  1)

-5  +  2x +  2x2 + 13x3 
2(x — l ) ( l  +  x + x2)

(A3)

-7  + 2x -  x2 +  17x3 +  2x4 -+ l l x 5 
2(x -  l)(x  +  1)(1 +  x +  x2)

-9  +  2x +  15x2 
2(x -  l) (x  +  1)

-11 -  20x -  12x2 +  13x3 +  36x4 +  37x5 +  36x6 +  28x7 +  13x8 
2(x — 1)(x +  1)(1 +  x -f x2)( l  +  x +  x2 4- x3 +  x4)
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